
Holochain
Distributed Coordination by Scaled Consent, not Global Consensus

Eric Harris-Braun, Arthur Brock, and Paul d’Aoust
(Dated: 2024-11-08 — v2.0)

We present a generalized system for large-scale distributed coordination that does not rely on global
consensus, explicating the problem instead through the lens of scaling consent. After establishing
initial axioms, we illustrate their application for coordination in games, then provide a formal
outline of the necessary integrity guarantees and functional components needed to deliver those
guarantees. Finally, we provide a fairly detailed, high-level, technical specification for our operating
implementation for scaling consent.

Introduction

Preamble – A Focus on Practice, Not Just
Theory

The original/alpha version of the Holochain white pa-
per1 took a formal approach to modeling generalized dis-
tributed computation schemes and contrasted Holochain’s
approach with blockchain-based systems. It also provided
formal reasoning for the scaling and performance benefits
of Holochain’s agent-centric approach.
When dealing with distributed systems, however, the ap-
plication of logical models and formal proofs are often
deceiving. This stems from how easy it is to define sets
and conditions which are logically solid in theory but
fundamentally impossible and unintelligible in practice.
Since our primary intent with Holochain is to provide
a highly functional and scalable framework for sophisti-
cated decentralized coordination, our focus must be on
what is practicable, and resist the pull of the purely con-
ceptual which frequently steers builders into unwieldy
architectures.
Note how easy it is to reference a theoretical set like “all
living persons” or “all nodes in the network.” But in
reality, it is impossible to identify that set in the physical
world. Even if one could eliminate the fuzzy boundaries
in the meaning of “persons” or “living,” there is no way
to discover and record the information quickly enough
about who is dying, being resuscitated, and being born
to construct the actual data set. Likewise, no single
agent on a network can determine with certainty which
nodes have come online, gone offline, or have declared
themselves as new nodes. Also, since network partitions
are a real, at any moment, one must question which
partition is considered “the network,” and how to enable
a single node or group of nodes to continue operating
appropriately even when no longer connected to the main
network.
The initial example should be a comparatively easy data
set to work with, since it changes relatively slowly. Typi-

1 https://holochain.org/documents/holochain-white-paper-al-
pha.pdf

cally each person undergoes a state change only twice in
their life (when they become a living person, and when
they cease to be one). However, the real-world use-cases
that modern distributed tooling needs to handle involve
data sets with much more rapid and complex changes. A
more apt logical construct might be “all people with just
one foot on the ground”. Membership in this set changes
quite rapidly – around 1/2 billion times per second2.

It should be obvious there is no practical way to work
with that data set without requiring actions that either
break reality (like freezing time) or asserting a god-like,
omniscient being, who not only has instantaneous access
to all knowledge (requiring information propagation faster
than the speed of light), but also has infinite attention
to all states (likely requiring infinite energy). However,
since current computing architectures are bound by laws
of physics, we should avoid the temptation of injecting
such impossible constructs into our theoretical models. A
proof that involves simple logical concepts which cannot
be reliably worked with in practice is not much of a proof
at all.

“Global state” and strategies for consensus about it are
exactly one of these dodgy constructs which are easy
concepts, but involve a drastic reduction of complexity,
agency, and degrees of freedom to reflect a small subset of
events happening in physical reality. Yet most current dis-
tributed systems undertake the expensive task of having
each node construct and maintain this unwieldy global
fiction. So, for example, although many blockchains run
on tens of thousands of processors, they advance in lock-
step as if a single-threaded process, and they are only
reliable for very simple world models, like moving tokens
(subtracting from a number in one address and adding it
to the number in another address).

“State” within the local computing context is likely rooted
in the concept of the Turing Tape3 or Von Neumann lin-

2 Globally, The Average Person Walks About 5,000 Steps
Per Day, American Institute of Cancer Research, 2017
https://www.aicr.org/news/globally-the-average-person-walks-
about-5000-steps-per-day/.

3 See https://en.wikipedia.org/wiki/Turing_machine.

https://holochain.org/documents/holochain-white-paper-alpha.pdf
https://holochain.org/documents/holochain-white-paper-alpha.pdf
https://www.aicr.org/news/globally-the-average-person-walks-about-5000-steps-per-day/
https://www.aicr.org/news/globally-the-average-person-walks-about-5000-steps-per-day/
https://en.wikipedia.org/wiki/Turing_machine

2

ear memory address architecture4 which assume a single
tape head or system bus for making changes to the single
local memory space where changes are stored. With the
introduction of multi-core processors, programmers en-
countered the myriad problems of having multiple agents
(CPUs) operating on just one shared local state. They
developed various strategies to enforce memory safety for
concurrent local operations. So, in distributed computing,
people extrapolated these local strategies and starting in-
venting some new ones, still in the attempt to manage
one single state across many physical machines.
The assumption of the need to sustain this simple logical
concept of managing one global state persisted, even when
that concept was mapped onto a physical topology which
made it fundamentally unknowable in practice.

Early influential works in decentralized computing (such
as the Byzantine Generals Problem5) may have also set
such expectations. Those papers were written in the
context of reaching consensus in finite control systems
where there was a known number of sensors and states,
and the goal was to reach a unified decision (like nine
generals deciding a time for all to attack). Therefore, to be
Byzantine Fault Tolerant, seems simply that a system is
tolerant of the kinds of faults introduced by the generals
problem (messages that are corrupted, misordered, or
lost and generals/nodes that are malicious), but most
distributed systems have assumed that global consensus
must be constructed and maintained in order to reach
a unified outcome. In this paper, we will detail some
more efficient paths to enable agents to act without a
construct of global consensus at all, yet still have strong
guarantees that even when nodes act in partitioned groups
or individually, they will reach a unified outcome.

So, while the formalizations from the original Holochain
white paper are still valid in theory, this white paper is
more concerned with addressing what works in practice.
We will start by stating our underlying assumptions as
axioms – each of which correlates to architectural prop-
erties of Holochain. And we will take special care not to
make grand, categorical statements which cannot be im-
plemented inside the constraints of computational systems
bounded by the laws of physics.

4 See https://en.wikipedia.org/wiki/Von_Neumann_architecture.
5 Some readers may come to the problems of distributed

coordination from the framework laid out by the litera-
ture on Byzantine Fault Tolerance such as The Byzantine
Generals Problem, Leslie Lamport, Robert Shostak, and
Marshall Pease https://lamport.azurewebsites.net/pubs/byz.pdf,
and Reaching Agreement in the Presence of Faults,
Marshall Pease, Robert Shostak, and Leslie Lamport
https://dl.acm.org/doi/pdf/10.1145/322186.322188. For a
story elucidating our frame that isn’t about generals coordinating
an attack, please see our paper The Players of Ludos: Beyond
Byzantium https://holochain.org/documents/holochain-players-
of-ludos.pdf.

Axioms – Our Underlying Basis for
Coordination

Here we spell out the assumptions upon which we have
built our approach to address the challenges of decentral-
ized coordination.
First, let us clarify what we mean by coordination. Our
goals for coordination are:

• To enable a group to establish ground rules which
form the context needed for coordination,

• To enable agents in the group to take effective or
correct action inside that context,

• To protect agents and the group from incorrect
actions any agent may take.

Axioms for Multi-agent Coordination Through Scaled
Consent

1. Agency is defined by the ability to take individual
action.

2. “State” is persisted data that an agent can access
through introspection.

3. It is easy to agree on a starting state; therefore it is
easy to establish ground rules for coordination up
front.

4. It is hard to maintain a unified, dynamic, shared
state across a network, because of the constraints
of physics.

5. Since only local time is knowable, non-local ordering
is constructed by explicit reference.

6. Agents always act based only on their state; that is,
data they can access locally.

7. Incorrect actions taken by an agent must harm only
themself.

8. Long-term coordination must include the ability to
orchestrate changes to ground rules.

Detailed Axioms and Architectural Consequences
The aforementioned axioms have affected the design of
Holochain in the following ways.
Agency is defined by the ability to take individual
action: Each agent is the sole authority for changing their
state; the corollary of this is that an agent cannot change
other agents’ states. Since Holochain uses cryptography
to eliminate many types of faults, this primarily means
constructing a public/private key pair and using it to
sign state changes recorded on an append-only log of
the agent’s actions. The log contains only actions of
this agent, and writing to it (changing their own state),
then sharing their state changes, is essentially the only
authority (in terms of authorship) an agent has.
“State” is persisted data, local to an agent, that
the agent can access through introspection: Be-
cause each agent is the sole author of their state6, agents

6 The “state” of a Holochain app does not generally include

https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://lamport.azurewebsites.net/pubs/byz.pdf
https://dl.acm.org/doi/pdf/10.1145/322186.322188
https://holochain.org/documents/holochain-players-of-ludos.pdf
https://holochain.org/documents/holochain-players-of-ludos.pdf

3

interact with their world by sharing their own state
changes and discovering, querying, and integrating state
changes from other agents. Agents must be able to safely
do so regardless of whether the peer delivering such data is
its original author. Once an agent holds the data (whether
because they authored it or received via networked com-
munication) it is now part of their introspectable state.
To act on such data, the agent still must verify whether
it is true/false, complete/incomplete, authentic/forged,
isolated/connected, reliable/suspect, etc.
It is easy to agree on a starting state; therefore it
is easy to establish ground rules for coordination
up front: The very first entry in an agent’s state log for
an app is the hashed reference to the code which estab-
lishes the grammar of coordination for that app. This
code defines data structures, linking patterns, validation
rules, business logic, and roles which are used and mutu-
ally enforced by all participating agents. The hash of this
first entry defines the space and methods of coordination
– agents only need to coordinate with other agents who
“speak the same language”. This establishes intentional
partitions between networks in support of scalability, be-
cause an agent does not need to interact with all agents
running Holochain apps, only the agents operating un-
der the same ground rules. This simplifies and focuses
overhead for validation and coordination.
It is hard to maintain a unified, dynamic, shared
state across a network, because of the constraints
of physics: In a distributed and open system, which
enables autonomous agents to make valid changes to their
state and freely associate with other agents in order to
communicate those state changes to them, one cannot
expect any one agent to know the state of all other agents
across whatever partitions they may be in and whatever re-
altime changes they may be making. Such an assumption
requires either centralization or omniscience. However, it
is feasible to ensure strong eventual consistency7, so that
when any agents interact with and integrate the same
data, all will converge to matching conclusions about the
validity of any state change it represents.
Since only local time is knowable, non-local or-
dering is constructed by explicit reference: In the
physical universe, entities experience time only as a local
phenomenon; any awareness of other entities’ experience
of time comes from direct interaction with them. Thus,
“global time” as a total ordering of causal events does not
exist and entities’ interactions form only partial orderings.
In Holochain, “direct interaction” comes in the form of
explicit hash references to other data. The first simple

ephemeral, non-persisted data such as what network sessions with
other agents one may currently have open, although Holochain
itself uses that kind of data to drive coordination.

7 Conflict-free Replicated Data Types, Marc Shapiro,
Nuno Preguiça, Carlos Baquero, Marek Zawirski
https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf.

structure for constructing order by reference is that each
agent’s action log is structured as an unbroken hash chain,
with every new action containing the hash of the prior ac-
tion. (Timestamps are also included, but are understood
to be an expression of local time only.) When agents
make state changes that rely on their prior state, the
chain automatically provides explicit sequence. When an
agent’s action has logical dependencies on another agent’s
data, they must reference the hash of those action(s) to
provide explicit ordering. In almost every application,
there is no need to construct absolute time or sequencing
to guarantee correct action; the only applications that ab-
solutely require this are ones that deal with rivalrous state
data, that is, exclusive ownership of a resource. If the
problem cannot be restructured to eliminate all rivalrous
state data, Holochain provides tools to implement conflict
resolution or micro-consensus for that small subset of data
for which it remains useful.

Agents always act based on their state; that is,
data they can access locally: Since agents must act
on what they know, they should be able to act as soon
as they have have whatever local knowledge they need to
take an action, with the assurance that any other nodes
validating their action will reach the same conclusion.
There is no reason to wait for other agents to reach a
state unless that is the confidence threshold required to
take that particular action. It is possible to architect
agent-centric solutions to most decentralized problems
which are many orders of magnitude more efficient than
managing global, data-centric consensus. For example,
this even includes building cryptocurrencies structured
as peer-to-peer accounting instead of global tracking of
token ownership, enabling the transacting agents (the
only ones who are changing their states) to validate each
other’s actions and countersign a transaction independent
from the rest of the network, who will validate it when
they receive it after it is done.

Incorrect actions taken by an agent must harm
only themself: We mentioned in the goals of collabora-
tion that incorrect actions must not harm other agents
or the integrity of the group. This is accomplished via
the validation that occurs when data is persisted in the
network. When a node receives a data element which it
is supposed to store and serve as part of the architecture
of global visibility into local state changes, they must
validate it before integrating and serving it to others. For
the previous example of a cryptocurrency, if the sender
did not have enough credits in their chain state for the
amount they are sending, the transaction would fail valida-
tion. The validating agents mark this action invalid, add
both parties who signed the transaction to their blocked
peers list, and publish a “warrant” letting others know
about the corrupt nodes so other agents can block them.
These warrants function as an immune system which pro-
tects individuals and the group from malicious or corrupt
actors. The agents did not need to be prevented from
taking the bad action, because they only changed their

https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf

4

own states, and the bad action becomes the proof needed
for the warrant to protect others from it.

Long-term coordination must include the ability to
orchestrate changes to ground rules: Coordination
cannot be effective without comprehension of the real-
world context within which it is happening. However,
agents cannot fully comprehend their context at first;
understanding comes with interaction over time. And
as the agents interact with their context, they may need
to evolve their understanding, as they encounter new
new situations which were not comprehended when the
current ground rules were established. Finally, the act
of interacting with a context changes the context itself.
Any “grammar” in which ground rules are written must
be expressive enough to write rules that address the needs
of the problem domain as well as a capacity to evolve
rules in response to changing context. In Holochain, the
ground rules for a group are expressed in executable code.
Its tools include an affordance for agents to migrate to a
new group with a new set of rules, as well as the ability
for an agent to “bridge” their presence in two different
groups via cross-space function calls.

Building a distributed coordination framework starting
from these axioms results in a system that empowers
agents to take independent and autonomous action with
partial information as soon as they have whatever they
need to ensure it is a correct action. This constitutes
a significant departure from the frame of thinking that
Byzantine Fault Tolerance traditionally assumes: that
complete consensus must be constructed before an agent
can act.

From Global Consensus to Scaled Consent
We start from the understanding that networks, social
spaces, and decentralized activities are inherently uncer-
tain. Thus, coordination is never about absolute certainty;
rather, it is about the capacity to remove sufficient uncer-
tainty to provide confidence for action, which is always
contextual. In distributed systems, it is absolutely fun-
damental to understand that every action taken by an
agent happens because that agent has crossed a confidence
threshold of some sort – from its own point of view, the
action is appropriate to take.

Fault Tolerance and Reducing Uncertainty
Like blockchain and other cryptographic systems,
Holochain starts the path of establishing confidence by
leveraging cryptography to reduce uncertainties which
remove most of the sources of Byzantine faults:

• Corrupt Messages: Data is retrieved by crypto-
graphic hash which makes records self-validating,
ensuring they are as requested and remain uncor-
rupted by checking data received against requested
hash. Network messages are also cryptographically
signed.

• Misordered Messages: Each agent writes their

actions to a local append-only cryptographic hash
chain, and must make explicit references to the
hashes of any other agent’s actions which one of
their actions logically relies on, thus establishing
indisputable ordering of data.

• Lost Messages: If the validity of any action relies
on prior data, there will be either missing hash
references or chain links which can be explicitly
retrieved or have validation paused until available.

• Forged Messages or Actions: Each action is
signed in sequence to its author’s local hash chain.
The public signing key is the same as the agent’s
address on the network. Hence all actions or mes-
sages are self-validating with respect to identity of
author.

• Malicious Actors/Actions: Actions are validated
based on local state established by the sequence of
actions in an agent’s hash chain, plus any actions
included by reference. This enables every peer who
is responsible for performing such validation to reach
the same deterministic conclusion regarding validity.

These strategies help reduce sources of uncertainty; how-
ever, when it comes to concerns related to “consensus,”
still admit actions which individually pass validation but
conflict with each other in content, substance, or perspec-
tive.

Increasing Gradients of Certainty
Given the above, we propose a very simple approach to
creating tooling capacity for building increasing certainty:
enable validated global visibility, on demand, of
local state. In this approach, we distinguish between
authorship, which is about local state changes initiated
by agents, and responsibility, which is about distributing
the workload of validating and serving records of local
state changes across the participants in the network. This
approach requires that we:

1. Ensure that all agents can reliably see what’s going
on; i.e., offer a framework for adding to and query-
ing a collectively held database in which there is a
minimum or “floor” of certainty regarding the con-
tents and authorship of data even in the presence
of an unbounded number of adversaries.

2. Ensure that all agents know the “ground-rules”; i.e.,
offer a framework for composing many small units of
social agreement in which players can add elements
of deterministic certainty into their interactions,
yielding an appropriate level of certainty ranging
from arbitrarily low to arbitrarily high.

The first point we deliver through various types of Intrin-
sic Data Integrity. We use a number of cryptographic
methods to create self-proving data of various types:

• Provenance: An agent’s network address is their
public key. Thus, when interacting with agents it’s
possible to have deterministic confidence in whom
one is interacting with because there is no identity

5

layer between network locations subject to attack
surface. I.e., unlike a web address, you don’t need a
domain name certificate associated with the domain
name to become confident of “whom” you are talking
to.

• Signatures: Because provenance is a public key,
it’s also easy to create self-proving authenticity. All
messages sent, and all data committed to chains, is
signed by agents using their public key. Thus any
agent can immediately, and with high confidence,
verify the authenticity of messages and data.

• Hashes: All shared data in a Holochain application
is addressed by its hash. Thus, when retrieving data
it’s possible to have deterministic confidence that it
hasn’t been tampered with by whoever was storing
or relaying it.

• Monotonicity: The system is both structurally
and logically monotonic. Structurally, local state is
append-only and shared state can only grow. Data
can be marked as deleted, but it is never actually
removed from the history of the agent who authored
it. Logically, once any peer has identified that a
state change is invalid, no peers should identify it
as valid.

• Common genesis: The validation rules and joining
criteria of an application are the first entries in
every agent’s chain. This provides a mechanism for
self-proving, shared ground rules. Any agent can
examine the chain of any other agent all the way
back to the source and thus have high confidence
that they have actually committed to play by the
same rules.

Building upon this fundament, we deliver the second
point through the ability to compose various types of
Validation Rules. Validation Rules create certainty in
the following dimensions, with some examples:

• Content: a string does not exceed a maximum
length

• Structure: an entry consists of a certain set of
types of data8

• Sequence: someone cannot spend credits they have
not already received

• Process: a transaction must be approved and
signed by a notary

• Behavior: one does not take an action more fre-
quently than a certain rate

8 While Per Martin-Löf demonstrated (see
https://en.wikipedia.org/wiki/Intuitionistic_type_theory) that
values can be unified with classical types into a single dependent
type theory (see https://en.wikipedia.org/wiki/Dependent_type),
thus showing that content and structure can be equivalent and
share a single calculus, here we distinguish the two in order to
speak a language that is more familiar to programmers.

• Dependency: an editor can only make changes if
another agent has given them prior authorization

The two domains of Intrinsic Data Integrity and Valida-
tion Rules, and their component dimensionality, amounts
to what we might call a “Geometry of Certainty”. Inside
the clarity of such a geometry, the gradients of certainty
become both much more visible, and much easier to build
for appropriately. Thus it provides a context of agents
being able to scale up their consent to play together in
ways that meet their safety requirements. This is why
we call our approach “Scaling Consent.” It is what en-
ables coherent collaborative action without first achieving
global consensus.

Scaling Coherence across Consenting Agents
The concept of social coherence may be the single most
important design goal for Holochain applications – to
provide a simple and consistent means of mutually enforc-
ing shared ground rules appropriate to a social context.
Some applications may require stricter validation because
they contain high-value data with weak trust relationships
between peers. Other apps which hold informal data or
have higher relational trust between agents may be signif-
icantly less strict. Part of Holochain’s scalability comes
from the ability to implement appropriate coherence for
each application’s context. To illustrate appropriate so-
cial coherence, the existence of and resolution of conflicts
in rivalrous data provides some clear examples.
Consider a social microblogging application built on
Holochain. Since the precise global ordering of most
actions is not vital, there is no reason to undertake the
coordination overhead of global consensus for each post,
like, follow, unfollow, reply, etc. Instead, simple causal
ordering, in which data explicitly refers to its logical
predecessors, will suffice for almost all actions.
If this application, unaware of total global ordering, ran
at the scale of X (formerly Twitter) with hundreds of
millions of daily users, a serious network partition9 such
as an extended loss in intercontinental connectivity would
not cause a change in functionality for users, beyond
being unable to see new posts from the far side of the
partition. Old data would be accessible in the near side of
the partition, and everything would keep functioning for
both hemispheres. If this continued for a week, and the
partition was resolved, all the data from both hemispheres
would merge gracefully except for one possible source of
conflict – new username registrations – because they are
the only rivalrous data in such an application.
Now, a given group’s rules for social coherence may not
require username registrations to be unique across all par-
ticipants. Systems that refer to participants by a random

9 It should be noted that communication latency induces conditions
equivalent to a network partition, differing only in scope; therefore,
there is still a risk of conflicting username registrations even in
an unpartitioned network.

https://en.wikipedia.org/wiki/Intuitionistic_type_theory
https://en.wikipedia.org/wiki/Dependent_type

6

unique key, allowing participants to identify themselves
and others by assigning non-unique “petnames”10 (per-
sonally meaningful identifiers) to those keys, are proven
to be usable in cases such as Signal Messenger and Secure
Scuttlebutt11.
But let us assume that users of this application demand
unique usernames in the manner of X. It could employ
one of a number of strategies for resolving or preventing
conflicts:

1. Users could timestamp username registrations us-
ing a neutral, trusted timestamping strategy such
as Roughtime12, and the application would auto-
matically resolve a conflict by favoring the earliest
registration time.

2. Conflicts could be permitted, but upon detection, a
social resolution procedure could be engaged, possi-
bly processing through multiple stages if less costly
strategies fail. Assisted by logical or cryptographic
algorithms, this procedure could take forms such
as:

• A relationship-building approach, in which con-
testants are encouraged to sort it out amongst
themselves, ending in one or both parties re-
leasing their registration,

• Awarding the username to the participant with
the highest reputation or social capital, or

• An auction.
3. Similar to client/server or blockchain approaches,

a set of one or more witnesses can be elected to
approve all name registrations and ensure there are
no conflicts. While this approach prevents conflicts
from happening, it requires a majority of a known
set of witnesses, and any partition which contains a
minority will not be able to process registrations.

Each one of these strategies achieves the same outcome
while embodying very different patterns of social coher-
ence; and in each case, there was no resolution overhead
expended on all the non-rivalrous forms of data.
Another commonly used example of the rivalrous data
problem is a “double-spend” attempt in a cryptocurrency.
This involves fooling two separate parties into receiving
units from the same pool of currency, such that the same
units are sent twice, thus artificially expanding one’s
outflow of currency beyond what should be possible. Each
transaction is valid in isolation, but conflicts with the
other.
Cryptocurrencies in Holochain are typically implemented
as accounting records stored in the histories of individual

10 An Introduction to Petname Systems, Marc Stiegler, 2005
http://www.skyhunter.com/marcs/petnames/IntroPetNames.html.

11 See https://signal.org and https://scuttlebutt.nz.
12 Roughtime IETF draft, W Ladd, Akamai Technologies, M

Dansarie, Netnod, 2024 https://datatracker.ietf.org/doc/draft-
ietf-ntp-roughtime/.

agents’ hash chains – If Alice sends Bob 1 million credits
of a currency, only Alice and Bob are changing their states,
so they can move forward with the transaction as soon as
they are confident the other party has committed to do
so, and that all parties are in a position to do so validly.

Accordingly, the double-spend problem presents differ-
ently. It involves Alice “forking” her own hash chain: if
Alice tries to send her 1 million credits to Bob and Carol
simultaneously, then each of those transaction records
in her chain will point to the same parent record hash.
Each looks valid on its own, but taken together they
demonstrate an invalid chain fork.

The protections an application implements against this
kind of forking may be very different based on the social
context and purpose of the application. At its most
basic, the application’s shared database (described in
requirement 1 under Increasing Gradients of Certainty)
acts as an “ambient witness” to all transactions. This
allows agents to see each other’s past behavior, including
whether they have forked their chains.

An application which assumes high network uptime, low
latency, and low risk of partitions might prevent this by
requiring a time delay between Alice’s promise of funds
and Bob or Carol’s acceptance, giving them time to check
the shared database for proof that Alice has published a
promise to them, and only them. Upon detection of the
fork neither will accept the funds.

However, if this currency were designed to work in regions
with unreliable network connectivity but strong, long-
term trust relationships between members, it may not
require such protections. This would increase the risk of
Alice forking her chain, but it could provide a way for
double-spends to be remedied after the fact. If both Bob
and Carol know Alice, where her business is, or where she
lives, there are social repercussions to cheating, and Alice
will have an incentive to fix her public record of trying
to cheat people, for instance cancelling one branch of the
fork and eventually delivering a new valid payment to
the recipient who had received payment via the cancelled
branch.

The above examples illustrate how the demand for appro-
priate social coherence drives an application’s approach
to selecting from affordances that Holochain provides to
resolve conflicts and reach unified outcomes. They also
demonstrate how coordination overhead becomes unneces-
sarily high if all non-rivalrous data is treated as rivalrous,
and how forcing conflict resolution into a single costly pat-
tern should not apply to all data nor in all social contexts.
Agentic assessment of the social context, and mutual
enforcement of only the necessary rules for coherence,
enables agents to act as soon as their certainty threshold
is reached. This is always true, whether it is reached
through centralized coordination, a Byzantine Generals’
Problem approach, or blockchain consensus algorithms.

http://www.skyhunter.com/marcs/petnames/IntroPetNames.html
https://signal.org
https://scuttlebutt.nz
https://datatracker.ietf.org/doc/draft-ietf-ntp-roughtime/
https://datatracker.ietf.org/doc/draft-ietf-ntp-roughtime/

7

Conclusion
While our axioms may seem obvious to those familiar with
distributed and agent-based systems, they yield surprising
and often-overlooked consequences when taken to their
logical conclusions in the design of a practical distributed
system. As we have seen, such a system is likely to be
more efficient than a consensus-based system of equivalent
functionality in terms of computation, communication,
and storage. It is also likely to be more respectful of the
agency of individuals and the group than either consensus
or centralized systems: there is an underlying theme
in these axioms, that of full agency constrained by the
obligation to respect the agency of others (and indeed the
inability to override their agency).

As we have also argued, and as other authors formally
prove13, such freedom need not compromise the technical
or social integrity needed to take confident action. There
is a broad space of design possibilities that allow groups
to embody non-coercive, highly coherent, contextually
appropriate patterns of coordination even in the presence
of malicious actors. In the remainder of this paper, we will
explore how Holochain’s design realizes the expressivity
necessary to build these patterns.

Holochain Design Overview: A Game
Play Metaphor

It may help to understand the design of Holochain through
a well-known pattern of agentic collaboration: playing
games.

Playing Games
People define the rules of a Game they want to play
together. As Players join the Game and start playing,
they append new Records of their play to their own Action
history. Then they update the Game Board by sharing
the Records of their Actions14 with other players.

The first requirement to create social coherence is ensuring
that people are playing the same game; therefore, the very
first record in every Agent’s history is the rules of the
game by which they agree to play. Obviously, Players are
not in the same game or able to use the same Game Board
if they don’t start with the same rule set. These rules are
the actual computer code that is executed in running the
Game, making moves and validating the Actions of all
Players.

13 Byzantine Eventual Consistency and the Fundamental Limits of
Peer-to-Peer Databases, Martin Kleppmann and Heidi Howard,
2020 https://arxiv.org/pdf/2012.00472.

14 You can think of this somewhat like correspondence chess, but
with substantially more formality.

System Description
We can describe the system as Agents, who play Games
together by taking Actions, the Records of which are held
in a distributed Ledger that is built by sharing these
Records over a Network with other Agents. We capitalize
terms that comprise the ontological units of the system,
and which are formally described in the later sections.

Agents
Agents have these properties:

1. Agents are the only source of Actions in the system,
thus Agents are the source of agency. All such
Actions are uniquely identifiable as to which Agent
took them; i.e., all Actions are signed by public-key
cryptography (see Actions below).

2. Agents are uniquely addressable by other Agents.
3. An Agent’s address is its public key.
4. Agents share Records of the Actions they take with

other Agents through distributed storage so that
those Records can be retrieved by other Agents
reliably.

5. Agents validate received Actions before storing or
sharing them.

6. Agents respond to requests for stored information.
7. Agents can send messages with arbitrary content

directly to other Agents.

Games
Games have these properties:

1. A Game consists of an Integrity specification with
these parts:

1. A deterministic description of the types of data
that are used to record some “play” in the
game. Such data is called an Entry, where
the act of generating such data is called an
Action, which is also recorded. Note: both
types of data, the content of the play (Entry)
and the meta-data about the play (Action),
when taken together, are called a Record.

2. A deterministic description of of the types of
relations between Entries or Actions. Such a
relation is called a Link.

3. A deterministic description of a properly
formed Membrane Proof, a credential that
grants an Agent permission to join a Game.
This description may not be able to fully vali-
date a Membrane Proof if its validity depends
on data elsewhere on the Game Board, as the
Agent’s Membrane Proof is checked against
this description before they join.

4. A deterministic description of the validity of
an Action and any Entry, Link, or Membrane

https://arxiv.org/pdf/2012.00472

8

Proof data it contains, in the context in which
it is produced. This may include rules about
the contents of data fields, the author’s current
state (for instance, whether a game move is
allowed given their history), presence of de-
pendencies (such as moves by their opponent
or certificates permitting them to play a cer-
tain role), and any other rules that may be
expressed deterministically given the context
available to the Action.

2. Along with the Integrity specification, a Game also
consists of a Coordination specification. This spec-
ification contains instruction sets that wrap the
reading, writing, and modification of Actions into
function call units and thus serve as an API to
the Game. For example, for a blogging “Game”
one such function call might be create_post which
takes a number of Actions that atomically write a
number of Records to the Agent’s Source Chain,
which include a Create-Entry Action for the post
as well as Create-Link Actions relating the post to
other Entries such as a “category” Entry (see below
for definitions of Actions and Source Chain).

3. Each instance of the Game is played on its own
Game Board which exists as a unique and indepen-
dent network of Agents playing that Game. The
consequence of this is that Games cannot interact
with each other directly, as all action in the system
is only taken by Agents. Note that Games can be
composed together, but only by groups of Agents
all playing across multiple games. This at first may
seem like a weakness, but it’s part of a key design
decision that contributes to the system’s overall de-
sign goals of evolvability. Essentially this creates
the pattern of game-within-a-game. For example a
chess tournament is really two games: the game of
“chess”, and the game of “tournament”. Composition
thus happens at the edges of games, through the
agency of the Agents who are playing both Games,
which allows each game to remain coherent on its
own terms.

In keeping with the metaphor of Game, we also refer to
the Integrity specification as the Validation Rules of the
Game.
We also refer to Integrity specification of a Game as its
DNA because this evokes the pattern of all the “cells” in
the social “body” as being built out of the same instruction
set, thus being the ground of self for that social body.
We also call an Integrity or Coordination specification
generically by the name Zomes (short for chromosomes)
as they also function as composable units for building
larger bodies of “genetic code” for said body.

Actions (and Entries and Records)
Actions have these properties:

1. An Action has cryptographic provenance in that it

is signed by the Agent that took the Action.

2. Actions are Recorded in a monotonically temporally
increasing hash-chain by the Agent that takes the
Action. We refer to this as a hash-chain because
each Action includes in it the hash of the previous
Action, thus creating a tamper-proof Action history.

3. Actions are addressed by the hash of the Action.

4. There are a number of Action types:

1. Dna: An action which contains the hash of the
DNA’s code, demonstrating that the Agent
possesses a copy of the rules of the Game and
agrees to abide by them.

2. AgentValidationPkg: An action which
presents an Agent’s Membrane Proof, the data
that proves that they have permission to join
a Game.

3. Create: An Action for adding new Game-
specific content. We call such content an Entry.
The Entry may be declared as public, and will
thus be published by the Agent to the network,
or declared as private, in which case publishing
is limited to just the Action data and not the
content. Entries are addressed by their hash,
and thus for Create Actions, this Entry hash
is included in the Action. Thus sometimes
the Action may be understood as “meta-data”
where the Entry is understood as “data”15.
Note that Actions and Entries are thus inde-
pendently addressable and retrievable. This is
a valuable property of the system. Note also
that many actions (for example ones taken by
different agents) may create the exact same
Entry; e.g., a hash-tag may be its own entry
but be created by different people.

4. Update: An Action which adds new Game-
specific content onto the chain that is intended
to update an existing entry creation Action
(either a Create or an Update).

5. Delete: An Action which indicates a previous
entry creation Action should be considered
deleted.

15 In many cryptographic systems hash-chains are thought of as
having “headers” and “entries”. Historically in Holochain devel-
opment we also used that nomenclature, but realized that the
name “header” comes from an implementation detail in building
hash chains. Ontologically what’s actually happening is that in
building such intrinsic integrity data structures, not only must
we record the “content” of what is to be written, but we must
also record data about the act of writing itself; i.e., who is doing
the writing, when they did so, and what they previously wrote.
Thus, in keeping with the core ontology of agent-centricity, we
switched to using the term “Action” instead of “header”, but we
retain the name Entry for that which is written.

9

6. CreateLink: An Action that unidirectionally
links one hash to another.

7. DeleteLink: An Action that indicates a previ-
ous link Action should be considered deleted.

8. InitZomesComplete: An action which an-
nounces that the Agent has completed any
necessary preparations and is ready to play
the Game.

9. OpenChain: An action which indicates that
an Agent is continuing their participation in
this Game from another Source Chain or an
entirely different Game.

10. CloseChain: An action which indicates that
an Agent is ending their participation in this
Game on this Source Chain, and may be con-
tinuing their participation in another Source
Chain or an entirely different Game.

5. A Record is just a name for both an Action and,
when applicable, its Entry, taken together. As an
implementation detail, note that for actions other
than Create and Update we don’t need to address
the content of the Action separately, in which case
the Record contains no Entry and we simply retrieve
all the data we need from the recorded Action.

6. Subsets of Agents can mutually consent to a single
Action by atomically recording the Action in their
history through Countersigning. Countersigning
can also be seen as an affordance in the system for
“micro-consensus” when that is necessary.

The Distributed Ledger
The Ledger, when seen systemically as a whole, consists of
the collection of all Records of Actions and their Entries in
a Game that have been taken by all the Agents together.
The Ledger is stored in two distinct forms:

1. As self-recorded Source Chains of each of the Agent’s
Actions.

2. As a Graphing Distributed Hash Table that results
from the sharing and validation of these Actions
across Agents, collectively taking responsibility for
validating and storing portions of the data.

The first form ensures the integrity of all data stored in the
network because it creates the coherence of provenance
and ordering of local state. The second form ensures the
validity and visibility of that data.
Note, there is never a point or place where a canonical
copy of the entire state of the ledger exists. It is always
distributed, either as the Source Chain of Actions taken
by a single agent, or broken into parts and stored after
validation by other participating Agents in the system.
An Agent may elect to take responsibility for validating
and storing the entire contents of the Ledger, but as
Holochain is an eventually consistent system, their copy
can never be said to be canonical.

The Ledger as Local State: Source Chain An Agent’s
Source Chain for a Game consists of a hash chain of
Records of Actions taken by the Agent in accordance
with the validation rules of that Game.

A Record consists of an Action which holds context and
points to an Entry which is the content of the Action.
The context information held by the Action includes:

1. The Action type (e.g. create/update/delete/link,
etc)

2. A time-stamp

3. The hash of the previous Action (to create the chain)

4. The sequence index of the Action in the chain

5. The hash of the Entry

The first few Records of every Source Chain - called
Genesis Records - create a “common ground” for all the
agents “playing” a Game to be able to verify the Game
and its “players” as follows:

1. The first Record always contains the full Validation
Rules of the Game, and is hence referred to as the
DNA. It’s what makes each Game unique, and, as
part of validation, always allows Agents to check
that other Agents are playing the same Game.

2. The second Record is a Game-specific Membrane
Proof, which allows Games to create Validation
rules for permissioned access to a Game.

3. The third Record is the Agent’s address, i.e. its
public key.

4. The final Genesis Records are any Game-specific
Records added during Genesis, followed by an
InitZomesComplete Record indicating the end of
the Genesis Records.

All subsequent Records in the Source Chain are simply
the Actions taken by that Agent. Note that Source Chains
may end with a Closing Record which points to an opening
record in a new Game.
The Ledger as Validated Shared State: Graphing DHT
After Agents record the Actions they take to their Source
Chains, they Publish these Actions to other Agents on
the Network. Agents receiving published data validate
it and make it available to other agents to query, thus
creating a distributed database. Because all retrieval
requests are keyed on the hashes of Actions or Entries,
we describe this database as a Distributed Hash Table
(DHT). Because such content-addressable stores create
sparse spaces in which discovery is prohibitively expensive,
we have extended the usual Put/Get operators of a DHT
to include linking hashes to other hashes, thus creating a
Graphing DHT.

As a distributed database, the DHT may be understood
as a topological transform of many Agents’ Source Chain
states into a form that makes that data retrievable by all

10

the other Agents for different purposes. These purposes
include:

1. Retrieval of Agent’s Actions and created Entries

2. Confirmation of “good behavior” by retrieving an
Agent’s activity history which is used to verify that
agents haven’t forked their chains

3. Retrieval of link information

4. Retrieval of validation receipts

To achieve this end, we take advantage of the fact that
an Agent’s public key (which serves as its address) is in
the same numeric space as the hashes of the data that
we want to store and retrieve. Using this property, we
can create a mapping between Agents and the portions
of the overall data they are responsible for holding, by
using a nearness algorithm between the Agent’s public
key and the address of the data to be stored. Agents
that are “close” to a given piece of data are responsible to
store it and are said to comprise a Neighborhood for that
data. Hashing creates an essentially random distribution
of which data will be stored with which Agents. The
degree of redundancy of how many Agents should store
copies of data is a per-Game parameter.

Agents periodically gossip with other Agents in their
Neighborhood about the published data they’ve received,
validating and updating their Records accordingly. This
gossip ensures that eventually all Agents querying a Neigh-
borhood for information will receive the same information.
Furthermore it creates a social space for detecting bad
actors. Because all gossiped data can intrinsically be
validated, any Agents who cheat, including by changing
their (or other’s) histories, will be found out, and be-
cause all data includes Provenance, any bad actors can
be definitively identified and ejected from the system.

See the Formal Design Elements section for more infor-
mation on how Agents convert Source Chain data to
operations that are published into the collectively stored
data on the DHT, and how this works to provide eventual
consistency, and the sections in System Correctness for
details on detection of malicious actors.

System Correctness: Confidence

In the frame of the Byzantine Generals Problem, the cor-
rectness of a distributed coordination system is analyzed
through the lens of “fault tolerance”. In our frame we take
on a broader scope and address the question of the many
kinds of confidence necessary for a system’s adoption and
continued use. We identify and address the following
dimensions of confidence:

1. Fault Tolerance: the system’s resilience to ex-
ternal perturbations, both malicious and natural.
Intrinsic integrity.

2. Completeness/Fit: the system’s a priori design

elements that demonstrate fitness for purpose. We
demonstrate this by describing how Holochain ad-
dresses multi-agent reality binding, scalability, and
shared-state finality.

3. Security: the system’s ability to cope with inten-
tional disruption by malicious action, beyond mere
detection of faults.

4. Evolvability: the system’s inherent architectural
affordances for increasing confidence over time, es-
pecially based on data from failures of confidence
in the above dimensions.

Our claim is that if all of these dimensions are sufficiently
addressed, then the system takes on the properties of anti-
fragility; that is, it becomes more resilient and coherent
in the presence of perturbations rather than less.

Fault Tolerance
In distributed systems much has been written about Fault
Tolerance especially to those faults known as “Byzantine”
faults. These faults might be caused by either random
chance or by malicious action. For aspects of failures in
system confidence that arise purely from malicious action,
see the Security section.

1. Faults from unknown data provenance: Be-
cause all data transmitted in the system is generated
and cryptographically signed by Agents, and those
signatures are also included in the hash-chains, it is
always possible to verify any datum’s provenance.
Thus, faults from intentional or accidental impostors
is not possible. The system cannot prevent mali-
cious or incautious actors from stealing or revealing
private keys, however, although it does include af-
fordances to deal with these eventualities. These
are discussed under Human Error.

2. Faults from data corruptibility in transmis-
sion and storage: Because all state data is stored
along with a cryptographic hash of that data, and
because all data is addressed and retrieved by that
hash and can be compared against the hash, the
only possible fault is that the corruption resulted
in data that has the same hash. For Blake2b-256
hashing (which is what we use), this is known to be
a vanishingly small possibility for both intentional
and unintentional data corruption.[ˆcorruption] Fur-
thermore, because all data is stored as hash-chains,
it is not possible for portions of data to be retroac-
tively changed. Agents’ Source Chains thus become
immutable append-only event logs.

One possible malicious act that an Agent can take
is to roll back their chain to some point and start
publishing different data from that point forward.
But because the publishing protocol requires Agents
to also publish all of their Actions to the neighbor-
hood of their own public key, any Actions that lead
to a forked chain will be easily and immediately

11

detected by simply detecting more than one action
linked to the same previous action.

It is also possible to unintentionally rollback one’s
chain. Imagine a setting where a hard-drive corrup-
tion leads to a restore from an outdated backup. If
a user starts adding to their chain from that state,
it will appear as a rollback and fork to validators.

Holochain adds an affordance for such situations in
which a good-faith actor can add a Record repudi-
ating such an unintentional chain fork.

3. Faults from temporal indeterminacy: In gen-
eral these faults do not apply to the system de-
scribed here because it only relies on temporality
where it is known that one can rely on it; i.e., when
recording Actions that take place locally as experi-
enced by an Agent. As these temporally recorded
Actions are shared into the space in which nodes
may receive messages in an unpredictable order, the
system still guarantees eventual consistency (though
not uniform global state) because of the intrinsic
integrity of recorded hash-chains and deterministic
validation. Additionally, see the Multi-agent reality
binding (Countersigning) section for more details on
how some of the use cases addressed by consensus
systems are handled in this system.

Completeness/Fit
Multi-agent reality binding (Countersigning)

The addition of the single feature of Countersigning to
Holochain enables our eventually consistent framework
to provide most of the consensus assurances people seek
from decentralized systems. Countersigning provides the
capacity for specific groups of agents to mutually sign a
single state-change on all their respective source-chains. It
makes the deterministic validity of a single Entry require
the cryptographic signatures of multiple agents instead of
just one. Furthermore any slow-downs necessary to add
coordinated countersigned entries are not just localized
to the DNA involved, they are also localized to just the
parties involved. The same parties can continue to interact
in other DNAs.

The following are common use cases for countersigning:

• Multi-Agent State Changes: Some applications
require changes that affect multiple agents simulta-
neously. Consider the transfer of a deed or tracking
a chain of custody, where Alice transfers ownership
or custody of something to Bob and they want to
produce an atomic change across both of their
source chains. We must be able to prevent in-
determinate states like Alice committing a change
releasing an item without Bob having taken posses-
sion yet, or Bob committing an entry acknowledg-
ing possession while Alice’s release fails to commit.
Holochain provides a countersigning process for mul-
tiple agents to momentarily lock their chains while

they negotiate one matching entry that each one
commits to their chain. An entry which has roles for
multiple signers requires signed chain Actions from
each counterparty to enter the validation process.
This ensures no party’s state changes unless every
party’s state changes.

• Cryptocurrencies Based on P2P Accounting:
Extending the previous example, if Alice wants to
transfer 100 units of a currency to Bob, they can
both sign a single entry where Alice is in the spender
role, and Bob the receiver. This provides similar
guarantees as familiar double-entry accounting, en-
suring changes happen to both accounts simultane-
ously. Someone’s balance can be easily computed
by replaying the transactions on their source chain,
and both signing parties can be held accountable
for any fraudulent transfers that break the data
integrity rules of the currency application. There’s
no need for global time of transactions when each
is clearly ordered by its sequence in the chains of
the only accounts affected by the change.

• Witnessed Authoritative Sequence: Some ap-
plications may require an authoritative sequence of
changes to a specific data type. Consider changes
to membership of a group of administrators, where
Carol and David are both members of the group,
and Carol commits a change which removes David
from the group, and David commits a change which
removes Carol. With no global time clock to trust,
whose change wins? An application can set up a
small pool of N witnesses and configure any change
to be the result of a countersigning session that
requires M optional witnesses (where M > 50% of
N). Whichever action the witnesses sign first would
prevent the other action from being signed, because
either Carol or David would have been successfully
removed and would no longer be authorized par-
ticipate in a countersigning session to remove the
other.

• Exclusive Control of Rivalrous Data: Another
common need for an authoritative time sequence
involves determining control of rivalrous data such
as name registrations. Using M of N signing from
a witness pool makes it easy to require witnessing
for only rivalrous data types, and forgo the over-
head of witnessing for all other data. For example,
a Twitter-like app would not need witnessing for
tweets, follows, unfollows, likes, replies, etc, only for
registration of new usernames and for name changes.
This preserves the freedom for low-overhead and
easy scaling by not forcing consensus to be managed
on non-rivalrous data (which typically comprises the
majority of the data in web apps).

• Generalized Micro-Consensus: Entwined
multi-agent state change: Even though
Holochain is agent-centric and designed to make

12

only local state changes, the countersigning process
may be seen as an implementation of Byzantine con-
sensus applied to specific data elements or situations.
Contextual countersigning is exactly what circum-
vents the need for global consensus in Holochain
applications.

Scaling
Holochain’s architecture is specifically designed to main-
tain resilience and performance as both the number of
users and interactions increase. Key factors contributing
to its scaling capabilities include:

1. Agent-centric approach: Unlike traditional
blockchain systems, which require global consen-
sus before progressing, Holochain adopts an agent-
centric approach where changes made to an agent’s
state become authoritative once stored on their
chain, signed, and communicated to others via the
DHT. As a result, agents are able to initiate ac-
tions without delay and in parallel to other agents
initiating their own actions.

2. Bottleneck-Free Sharded DHT: Holochain’s
DHT is sharded, meaning that each node only stores
a fraction of the total data, reducing the storage
and computational requirements for each partici-
pant. At the same time, the storage of content
with agents whose public key is “near” the hash
of each Action or Entry, in combination with the
use of Linking metadata attached to such hashes,
transforms the DHT into a graphing DHT in which
data discovery is simple in spite of the sparseness
of the address space. When the agents responsible
for validating a particular state change receive an
authoring agent’s proposed state change, they are
able to:

1. Request information from others in the DHT
regarding the prior state of the authoring agent
(where relevant), and

2. Make use of their own copy of the app’s vali-
dation rules to deterministically validate the
change.

While that agent and its validating peers are en-
gaged with the creation and validation of a par-
ticular change to the state of the authors chain,
in parallel, other agents are able to author state
changes to their own chain and have these validated
by the validating peers for each of those changes.
This bottle-neck free architecture allows users to
continue interacting with the system without wait-
ing for global agreement.

With singular actions by any particular agent (and
the validation of those actions by a small number
of other agents) able to occur simultaneously with
singular actions by other agents as well as counter-
signed actions by particular groups of agents, he net-

work is not updating state globally (as blockchains
typically do) but is instead creating, validating, stor-
ing, and serving changes of the state of particular
agents in parallel.

3. Multiple networks: In Holochain, each applica-
tion (DNA) operates on its own independent net-
work, effectively isolating the performance of individ-
ual apps. This prevents a high-traffic, data-heavy,
or processing-heavy app from affecting the perfor-
mance of other lighter apps within the ecosystem.
Participants are able to decide for themselves which
applications they want to participate in.

4. Order of Complexity: “Big O” notation is usu-
ally only applied to local computation based on
handling n number of inputs. However, we may
consider a new type of O-notation for decentralized
systems which includes two inputs, n as the number
transactions/inputs/actions, and m as the number
of nodes/peers/agents/users, as a way of expressing
the time complexity for both an individual node
and for the aggregate power of the entire network
of nodes. Most blockchains are some variant of
O(n2 ∗ m) in their order of complexity. Every node
must gossip and validate all state changes. However,
Holochain retains a constant O(log(n)

m) complexity
for any network larger than a given size R, where R
is the sharding threshold. As the number of nodes
in the network grows, each node performs a static
workload irrespective of network size; or expressed
inversely, a smaller portion of the total network
workload.

Shared-state Finality
Many blockchains approximate chain finality by assuming
that the “longest chain wins.” That strategy does not
translate well to agent-centric chains, which are simply
histories of an agent’s actions. While there is no con-
cern about forking global state because a Holochain app
doesn’t have one, we can imagine a situation where Alice
and Bob have countersigned a transaction, then Alice
forks her source chain by later committing an Action to
an earlier sequence position in her chain. If the timestamp
of this new, conflicting Action precedes the timestamp of
the transaction with Bob, it could appear that Bob had
knowingly participated in a transaction with a malicious
actor, putting his own integrity in question. This can even
happen non-maliciously when someone suffers data loss
and restores from a backup after having made changes
that were not included in the backup. While the initial
beta version of Holochain does not offer fork finality pro-
tections for source chains, later versions will incorporate
“meta-data hardening” which enables gossiping peers to
tentatively solidify a state of affairs when they see that
gossip for a time window has calmed and neighbors have
converged on the same state. After this settling period
(which might be set to something between 5 to 15 min-
utes) any later changes which would produce a conflict

13

(such as forking a chain) can be rejected, preserving the
legitimacy of state changes that were made in good faith.

Security
The system’s resilience to intentional gaming and disrup-
tion by malicious actors will be covered in depth in future
papers, but here we provide an overview.

Many factors contribute to a system’s ability to live up
to the varying safety and security requirements of its
users. In general, the approach taken in Holochain is to
provide affordances that take into account the many types
of real-world costs that result from adding security and
safety to systems such that application developers can
match the trade-offs of those costs to their application
context. The integrity guarantees listed in the formal
system description detail the fundamental data safety that
Holochain applications provide. Some other important
facets of system security and safety come from:

1. Gating access to functions that change local state,
for which Holochain provides a unified and flexible
Object Capabilities model

2. Detecting and blocking participation of bad actors,
including attempts to flood a DHT with otherwise
valid data, for which Holochain provides the affor-
dances of validation and warranting.

3. Protection from attack categories

4. Resilience to human error

Gating Access via Cryptographic Object Capabilities
To use a Holochain application, end-users must trigger
Zome Calls that effect local state changes on their Source
Chains. Additionally, Zome Functions can make calls to
other Zome Functions on remote nodes in the same app,
or to other DNAs running on the same Conductor. All
of these calls must happen in the context of some kind
of permissioning system. Holochain’s security model for
calls is based on the Object-capability16 security model,
but augmented for a distributed cryptographic context
in which we use cryptographic signatures to prove the
necessary agency for taking action.

Access is thus mediated by Capability Grants of four
types:

• Author: only the agent owning the source change
can make the zome call

• Assigned: only the specified public key holders
can make the zome call, as verified by a signature
on the function call payload

• Transferrable: anybody with the given secret can
make the zome call

16 See https://en.wikipedia.org/wiki/Object-capability/_model

• Unrestricted: anybody can make the zome call
(no secret nor proof of authorized key needed to use
this capability)

All zome calls must be signed and also take a required
capability claim parameter that MUST be checked by
the system for making the call. Agents record capabil-
ity grants on their source chains and distribute their
corresponding secrets as applicable according to the ap-
plication’s needs. Receivers of secrets can record them as
private capability claim entries on their chains for later
lookup and use. The “agent” type grant is just the agent’s
public key.

Validation & Warranting
We have already covered how Holochain’s agent-centric
validation and intrinsic data integrity provides security
from malicious actors trying to introduce invalid or incor-
rect information into an Application’s network, as every
agent can deterministically verify data and thus secure
itself. It is also important, however, to be able to eject
malicious actors from network participation who gener-
ate or propagate invalid data, so as to proactively secure
the network against the resource drain that future such
actions from those actors may incur.
As agents publish their actions to the DHT, other agents
serve as validators. When validation passes, they send a
validation receipt back to the authoring agent, so they
know the network has seen and stored their data. When
validation fails, they send a negative validation receipt,
known as a warrant, back to the author and their neigh-
bors so the system can propagate these provably invalid
attempted actions. This also flags the offending agent as
corrupted or malicious so that other nodes can block them
and stop interacting with the offending agent. Every node
can confirm the warrant for themselves, as it is justified
by the shared deterministic validation rules, of which all
agents have a copy.
This enables a dynamic whereby any single honest agent
can detect and report any invalid actions. So instead of
needing a majority consensus to establish reliability of
data (an “N/2 of N” trust model), Holochain enables “one
good apple to heal the bunch” with a “1 of N” trust model
for any data you acquire from agents on the network.
For even stricter situations, apps can achieve a “0 of N”
trust model, where no external agents need to be trusted,
because nodes can always validate data for themselves,
independent of what any other nodes say.

Security from Attack Categories
Consensus Attacks This whole category of attack starts
from the assumption that consensus is required for dis-
tributed systems. Because Holochain doesn’t start from
that assumption, the attack category really doesn’t apply,
but it’s worth mentioning because there are a number of
attacks on blockchain which threaten confidence in the
reliability of the chain data through collusion between

https://en.wikipedia.org/wiki/Object-capability/_model

14

some majority of nodes. The usual thinking is that it
takes a large number of nodes and massive amounts of
computing power or financial incentives to prevent undue
hijacking of consensus. However, since Holochain’s data
coherence doesn’t derive from all nodes awaiting consen-
sus, but rather on deterministic validation, nobody ever
needs to trust a consensus lottery.
Sybil Attacks Since Holochain does not rely on any kind
of majority consensus, it is already less vulnerable to Sybil
Attacks, the creation of many fake colluding accounts
which are typically used to overwhelm consensus of honest
agents. And since Holochain enables “1 of N” and even
“0 of N” trust models, Sybils cannot entirely overwhelm
honest agents’ ability to determine the validity of data.

Additionally, since Holochain is a heterogeneous environ-
ment in which every app operates on its own isolated
network, a Sybil Attack can only be attempted on a sin-
gle app’s network at a time. For each app, an appropriate
membrane can be defined on a spectrum from very open
and permissive to closed and strict by defining validation
rules on a Membrane Proof.

A membrane proof is passed in during the installation
process of an agent’s instance of the app, so that the
proof can be committed to the agent’s chain just ahead
of their public key. An agent’s public key acts as their
address in that application’s DHT network, and is created
during the genesis process in order to join the network.
Other agents can confirm whether an agent may join by
validating the membership proof.

A large variety of membrane proofs is possible, ranging
from none at all, loose social triangulation, or an invitation
from any current user, to stricter invitation lists, proof-
of-work requirements, or a kind of proof-of-stake showing
the agent possesses and has staked some value which they
lose if their account gets warranted.

We generally suggest that applications may want to en-
force some kind of membrane against Sybils, not because
consensus or data integrity are at risk but because car-
rying a lot of Sybils makes unnecessary work for honest
agents running an application. We cover more about this
in the next section.
Denial-of-Service Attacks Holochain is not systemically
subject to denial-of-service attacks because there is no
central point to attack. Because each application is its
own network, attackers would have to flood every agent of
every application to carry out a systemic denial-of-service
attack; to do that would require knowing who all those
agents are, which is also not recorded in one single place.
One point of vulnerability is the bootstrap servers for an
application. But this is not a systemic vulnerability, as
each application can designate its own bootstrap server,
and they can also be arbitrarily hardened against denial-
of-service to suit the needs of the application.
Eclipse Attacks An Eclipse Attack happens when a
newly joining node is prevented from ever joining the
main/honest network because it initially connects to a

dishonest node which only ever shares information about
other colluding dishonest nodes. This attack is specific
to gossip-based peer-to-peer networks such as Bitcoin,
Holochain, and DHTs like IPFS.
Holochain apps bypass the risk of an Eclipse Attacks by
providing an address for a bootstrap service which ensures
your first connection is to a trusted or honest peer. If
an application fails to provide a bootstrap service, nodes
will try connecting via https://bootstrap.holochain.org
which provides initial trusted peers, if those have been
specified. If not specified, the default bootstrap service
provides random access to any and all peers using the
app, which at least ensures nodes cannot be partitioned
from honest peers.
Application developers can take steps to further protect
their users by providing in-app methods of exchanging
signed pings with known nodes (such as a progenitor,
migrator, notary, witness, or initial admin node) so a node
can ensure it is not partitioned from the real network.
Human Error There are some aspects of security, espe-
cially those of human error, that all systems are subject
to. People will still lose their keys, use weak passwords,
get computer viruses, etc. But, crucially, in the realm
of “System Correctness” and “confidence,” the question
that needs addressing is how the system interfaces with
mechanisms to mitigate against human error. Holochain
provides significant tooling to support key management in
the form of its core Distributed Public Key Infrastructure
(DPKI) and DeepKey app built on that infrastructure.
Among other things, this tooling provides assistance in
managing keys, managing revocation methods, and re-
claiming control of applications when keys or devices have
become compromised.
A definition and specification of a DPKI system is out-
side of the scope of this paper; see the DeepKey design
specification17 for a more thorough exploration.

Evolvability
For large-scale systems to work well over time, we contend
that specific architectural elements and affordances make
a significant difference in their capacity to evolve while
maintaining overall coherence as they do so:

1. Subsidiarity: From the Wikipedia definition:
Subsidiarity is a principle of social organi-
zation that holds that social and political
issues should be dealt with at the most im-
mediate (or local) level that is consistent
with their resolution.

Subsidiarity enhances evolvability because it insu-
lates the whole system from too much change, while
simultaneously allowing change where it is needed.

17 See https://github.com/holochain/deepkey/blob/main/docs/2023/README.md.

https://github.com/holochain/deepkey/blob/main/docs/2023/README.md

15

Architecturally, however, subsidiarity is not easy to
implement because it is rarely immediately obvious
what level of any system is consistent with an issue’s
resolution.
In Holochain, the principle of subsidiarity is embod-
ied in many ways, but crucially in the architecture of
app instances having fully separate DNAs running
on their own separate networks, each also having
clear and differentiable Integrity and Coordination
specifications. This creates very clear loci of change,
both at the level of when the integrity rules of a
DNA need to change, and at the level of how one
interacts with a DNA. This allows applications to
evolve exactly in the necessary area by updating only
the DNA and DNA portion necessary for changing
the specific functionality that needs evolving.

2. Grammatic18 composability: Highly evolvable
systems are built of grammatic elements that com-
pose well with each other both “horizontally”, which
is the building of a vocabulary that fills out a given
grammar, and “vertically” which is the creation of
new grammars out of expressions of a lower level
grammar. There is much more that can be said
about grammatics and evolvability, but that is out
of scope for this paper. However, we contend that
the system as described above lives up to these cri-
teria of having powerful grammatical elements that
compose well as described. DNAs are essentially
API definitions that can be used to create a large
array of micro-services that can be assembled into
small applications. Applications themselves can be
assembled at the User Interface level. A number of
frameworks in the Holochain ecosystem are already
building off of this deep capacity for evolvability
that is built into the system’s architecture19.

Holochain Formal Design Elements

Now we turn to a more formal and detailed presentation
of the Holochain system, including assumptions, architec-
ture, integrity guarantees, and formal state model.

18 We use the term “grammatic” as a way to generalize from the usual
understanding of grammar which is linguistic. Where grammar
is often understood to be limited to language, grammatics points
to the pattern of creating templates with classes of items that
can fill slots in those templates. This pattern can be used for
creating “grammars” of social interaction, “grammars” of physical
structures (we would call Christopher Alexander’s “A Pattern
Language” for architecture an example of grammatics), and so
on.

19 A number of projects in the Holochain ecosystem are al-
ready exhibiting this characteristic of evolvability, such
as The Weave / Moss (see https://theweave.social),
Ad4m (https://ad4m.dev/), Memetic Activation Platform
(see https://github.com/evomimic/we-all-map/wiki/MAP-
Overview).

Purpose of this Section: To provide an understanding
of the functional requirements of Holochain and specify a
technical implementation of the cryptographic state tran-
sitions and application processes that enforce Holochain’s
integrity guarantees.

Definition of Foundational Principles
• Cryptography: Holochain’s integrity guarantees

are largely enabled by cryptography. It is used in
three main ways.

– Hashes: Data is uniquely identified by its
hash, which is the key used to retrieve the
data from a Content Addressable Store.

– Signing: Origination of data (for all storage
and network communications) is verified by
signing a hash with a private key.

– Encryption: Data is encrypted at rest and
on the wire throughout the system.

• Agency: Holochain is agent-centric. Each and
every state change is a result of:

1. A record of an agent’s action,
2. signed by the authoring agent,
3. linearly sequenced and timestamped
4. to their local source chain.

Each agent is the sole authority for managing its
local state (by virtue of controlling their private
key required for signing new actions to their source
chain).

• Accountability: Holochain is also socio-centric.
Each Holochain application defines its set of mutu-
ally enforced data integrity rules. Every local state
change gets validated by other agents to ensure that
it adheres to the rules of that application. Peers also
enforce limits on publishing rates, protect against
network integrity threats, and can ban rule-breakers
by a process we call warranting.

• Data: Unlike some other decentralized approaches,
in Holochain, data does not have first-order, in-
dependent, ontological existence. Every record in
the shared DHT network space MUST CARRY its
provenance from a local source chain as described
below.

• Provenance: Each record created in a Holochain
application starts as an action pair on someone’s
local source chain. As such, even when published
to the shared DHT, records must carry the asso-
ciated public key and signature of the agent who
created it. This means every piece of data carries
meta-information about where that data came from
(who created it, and in what sequence on the their
chain). Note: In other hash-chain based systems
Holochain’s “actions” are often called “headers,”
which link to the previous headers to create the
chain. In Holochain, while the action does establish

https://theweave.social
https://ad4m.dev/
https://github.com/evomimic/we-all-map/wiki/MAP-Overview
https://github.com/evomimic/we-all-map/wiki/MAP-Overview

16

temporal order, its core function is to record an act
of agency, that of “speaking” data into existence.

• State: State changes in Holochain are local (signed
to a local Source Chain) and then information about
having created a local state change is shared publicly
on the DHT. This allows global visibility of local
state changes, without a need to manage consensus
about a global state, because there is truly no such
thing as global state in a system that allows massive,
simultaneous, decentralized change.

• Time: There is no global time nor global absolute
sequence of events in Holochain either. No global
time is needed for local state changes, and since each
local change is stored in a hash chain, we get a clear,
immutable, sequence of actions tagged with local
timestamps. (Note: For apps that need some kind
of time proof to interface with the outside world
(e.g. token or certificate expiration timestamps) we
plan to provide a time proof service that replaces
the need for centrally trusted timeservers.)

System Architecture Overview
In Holochain every app defines a distinct, peer-to-peer,
encrypted network where one set of rules is mutually
enforced by all users. This network consists of the peers
running the app, who participate in routing messages to
each other and validating and storing redundant copies
of the application’s database.

Holochain operates different subsystems, each of which
functions on separate workflows and change models. Even
though Holochain functions as a common underlying
database on the back-end, the workflows in each sub-
system each have different input channels which trigger
different transformational processes. Each workflow has
distinct structural bottlenecks and security constraints,
which necessitates that execution of workflows is paral-
lelized across subsystems, and sometimes within a subsys-
tem.

1. Local Agent State: Represented as changes to an
agent’s state by signing new records with their pri-
vate key, and committing them to a local hash chain
of their action history called a Source Chain. Initial
chain genesis happens upon installation/activation,
and all following changes result from “zome calls”
into the app code.

2. Global Visibility of Local State Changes: Af-
ter data has been signed to a Source Chain it gets
published to a Graphing DHT (Distributed Hash
Table) where it is validated by the peers who will
store and serve it. The DHT is continually balanced
and healed by gossip among the peers.

3. Network Protocols: Holochain instantiates the
execution of app DNA on each node under the
agency identified by the public key, transforming
code into a collective networked organism. An
agent’s public key is their network address, and is

used as the to/from target for remote zome calls, sig-
nals, publishing, and gossip. Holochain is transport-
agnostic, and can operate on any network transport
protocol which a node has installed for routing, boot-
strapping, or proxying connections through NAT
and firewalls.

4. Distributed Application: Apps are compiled
and distributed into WebAssembly (WASM) code
bundles which we call a DNA. Data integrity is
enforced by the validation defined in an app’s DNA,
which is composed of data structures, functions, and
callbacks packaged in Zomes (short for chromosome)
which function as reusable modules. DNAs are
coupled with an Agent’s public key and activated or
instantiated into a Cell. Installation and activation
status of these bundles is managed by a runtime
container.

Some notes on terminology
Biological Language We have chosen biological language
to ground us in the pattern of collective distributed co-
herence that we observe in biological organisms. This
is a pattern in which the agents that compose an organ-
ism (cells) all start with the same ground rules (DNA).
Every agent has a copy of the rules that all the other
agents are playing by, clearly identifying membership in
the collective self based on matching DNA.
This is true of all Holochain DNAs, which can also be
combined together to create a multi-DNA application
(with each DNA functioning like a distinct micro-service
in a more complex application). In a hApp bundle, each
DNA file is the complete set of integrity zomes (WASM)
and settings whose hash also becomes the first genesis
entry in the agent’s source chain. Therefore, if the DNA
hash in your first chain record does not match mine, we
are not cells of the same network organism. A “zome” is a
code module, which functions as the basic compositional
unit for assembling the complete set of an application’s
DNA.
When a DNA is instantiated along with a public/private
key pair, it becomes a “cell” which is identified by the
combination of the DNA hash and the public key.
Students of biology may recognize ways that our language
doesn’t fully mesh with their expectations. Please for-
give any imprecision with understanding of our intent
to build better language for the nature of distributed
computing that more closely matches biology than typical
mechanistic models.
The Conductor Much of the discussion below is from
the perspective of a single DNA, which is the core unit
in Holochain that provides a set of integrity guarantees
for binding agents together into a single social context.
However, Holochain can also be seen as micro-service
provider, with each DNA providing one micro-service.
From this perspective, a Holochain node is a running
process that manages many connections to many DNAs
simultaneously, from user interfaces initiating actions,

17

from other nodes sharing a subset of identical DNAs,
and from cells within the same node sharing the same
agent ID but bound to different DNAs. Thus, we call
a Holochain node the Conductor as it manages the
information flows from “outside” (UI calls and calls from
other local cells) and from “inside” (network interactions)
as they flow into and out of the may DNA instances
running code. This term was chosen as it suggests the feel
of musical coordination of a group, as well as the conduit
of an electrical flow. Please see the Implementation Spec
(Appendix A) for a more detailed on how a complete
Holochain Conductor must be built.

Integrity Guarantees
Within the context of the Basic Assumptions and the
System Architecture both described above, the Holochain
system makes the following specific integrity guarantees
for a given Holochain DNA and network:

1. State: Agents’ actions are unambiguously ordered
from any given action back to genesis, unforgeable,
non-repudiable, and immutable (accomplished via
local hash chains called a Source Chain, because
all data within the network is sourced from these
chains.)

2. Self-Validating Data: Because all DHT data is
stored at the hash of its content, if the data returned
from a request does not hash to the address you
requested, you know you’ve received altered data.

3. Self-Validating Keys: Agents declare their ad-
dress on the network as their public key, and key
rotation is subject to rules defined by the agent
and enforced by their peers. Peers can confirm any
published data or remote call is valid by checking
the signature using the from address as the public
key.

4. Termination of Execution: No node can be co-
erced into infinite loops by non-terminating appli-
cation code in either remote zome call or validation
callbacks. Holochain uses WASM metering to guar-
antee a maximum execution budget to address the
the Halting Problem.

5. Deterministic Validation: Ensure that only de-
terministic behaviors (ones that will always get the
same result no matter who calls them on what com-
puter) are available in validation functions. An
interim result of “missing dependency” is also ac-
ceptable, but final evaluation of valid/invalid status
for each datum must be consistent across all nodes
and all time spans.

6. Strong Eventual Consistency: Despite network
partitions, all nodes who are authorities for a given
DHT address (or become one at any point) will even-
tually converge to the same state for data at that
address. This is ensured by the DHT functioning
as a conflict-free replicated data type (CRDT).

7. “0 of N” Trust Model: Holochain is immune
to “majority attacks” because any node can always

validate data for themselves independent of what
any other nodes say.20

8. Data Model Scalability: Because of the overlap-
ping sharding scheme of DHT storage and validation,
the total computing power and overall throughput
for an application scales linearly as more users join
the app.

9. Atomic Zome Calls: Multiple writes in a single
zome call will all be committed in a single SQL
transaction or all fail together. If they fail the zome
call, they will report an error to the caller and the
writes will be rolled back.

Source Chain: Formal State Model
Data in a Holochain application is created by agents chang-
ing their local state. This state is stored as an append-only
hash chain. Only state changes originated by that agent
(or state changes that they are party to in a multi-agent
action) are stored to their chain. Source Chains are NOT
a representation of global state or changes that others are
originating, but only a sequential history of local state
changes authored by one agent.
The structure of a Source Chain is that of a hash chain
which uses headers (called “actions” in Holochain terms)
to connect a series of entries. Each record in the chain is
a two-element tuple, containing the action and the entry
(if applicable for the action type).
Since the action contains the prior action hash and current
entry hash (if applicable), each record is a tamper-proof
atomic data element. Additionally, in practice a record is
always transmitted along with a signature on the action’s
hash, signed by the private complement of the public
key in the action. This means that anyone can hash the
entry content to make sure it hasn’t been tampered with,
and they can hash the action data and compare the ac-
companying signature on that hash to ensure it matches
the author’s public key. The action’s chain sequence
and monotonic timestamp properties provide further im-
mutable reinforcement of logical chain ordering.
Data in Holochain is kept in Content Addressable Stores
which are key-value stores where the key is the hash of the
content. This makes all content self-validating, whether
served locally or remotely over the DHT. Data can be
retrieved by the action hash (synonymous with record
hash) or the entry hash.
The code that comprises a Holochain application is cate-
gorized into two different types of zomes:

1. Integrity Zomes which provide the immutable
portion of the app’s code that:

• identifies the types of entries and links that
may be committed in the app,

20 See this Levels of Trust Diagram
https://miro.medium.com/max/1248/0*k3o00pQovnOWRwtA.

hwp_A_implementation_spec.md
hwp_A_implementation_spec.md
https://miro.medium.com/max/1248/0*k3o00pQovnOWRwtA

18

• defines the structure of data entries, and
• defines the validation code each node runs for

each type of operation that intends to add to
state at a given DHT address.

2. Coordinator Zomes, the set of which can be re-
moved from or added to while an app is live, and
which contain various create, read, update, and
delete (CRUD) operations for entries and links, func-
tions related to following graph links and querying
collections of data on the DHT, and any auxillary
functionality someone wants to bundle in their ap-
plication.

Each application running on Holochain is uniquely iden-
tified by a DNA hash of the integrity zome code, after
being compiled to Web Assembly (WASM) and bundled
with additional settings and properties required for that
app.
Application Note: Multiple DNA-level apps can be bun-
dled together like interoperating micro-services in a larger
Holochain Application (hApp), but the locus of data in-
tegrity and enforcement remains at the single DNA level,
so we will stay focused on that within this document.
There are three main types of Zome functions:

1. (zf) zome functions which do not alter state.
2. (Zf) that can be called to produce state changes,

as well as the
3. Validation Rules (VR) for enforcing data integrity

of any such state changes (additions, modifications,
or deletions of data).

zf1 . . . zfx ∈ Coordinator Zomes
Zf1 . . . Zfx

∈ Coordinator Zomes
VR1 . . . VRx

∈ Integrity Zomes

Note about Functions: Most functionality does not need
to be in the immutable, mutually enforced rules included
in the DNA hash (Integrity Zomes); only the functionality
which validates data ((VR)) does. In practice, including
code that does not contribute to data validation ((zf), (
Zf)) in the integrity zome creates a brittle DNA that is
difficult to update when bugs are repaired or functionality
needs to be introduced or retired.
The first record in each agent’s source chain contains the
DNA hash. This initial record is what demonstrates that
each agent possessed, at installation time, identical and
complete copies of the the rules by which they intend
to manage and mutually enforce all state changes. If a
source chain begins with a different DNA hash, then its
agent is in a different network playing by a different set
of rules.
Genesis: The genesis process for each agent creates three
initial entries.

1. The hash of the DNA is stored in the first chain
record with action C0 like this:

C0 = WASM

{
aDNA

eDNA

}
2. Followed by a “Membrane Proof” which other nodes

can use to validate whether the agent is allowed to
join the application network. It can be left empty if
the application membrane is completely open and
it doesn’t check or use proofs of membership.

C1 =
{

amp

emp

}
3. And finally the agent’s Public Key that they have

generated, which also becomes their address on the
network and DHT. Keys are the only entry type for
which the hash algorithm is equality (meaning the
hash of a key is the key itself, so it cannot contain
any content other than the public key).

C2 =
{

aK

eK

}
Initialization: After genesis, DNAs may have also pro-
vided initialization functions which are all executed the
first time an inbound zome call is received and run. This
delay in initialization is to allow time for the application
to have joined and been validated into the network, just
in case initialization functions may need to retrieve some
data from the network.
Initialization functions may write entries to the chain,
send messages, or perform any variety of actions, but after
all coordinator zomes’ initialization functions (according
to the order they were bundled together) have successfully
completed their initializations, an InitZomesComplete
action is written to the source chain, so that it will not
re-attempt initialization, thus preventing any redundant
side-effects.
Ongoing Operation via Calls to Zome Functions:
All changes following genesis and initialization occur by
Zome call to a function contained in a Coordinator Zome
in the following form:

Zc = {Zf , Params, CapTokenSecret}

Where Zf is the Zome function being called, Params
are the parameters passed to that Zome function, and
CapTokenSecret references the capability token which
explicitly grants the calling agent the permission to call
that function.
Based on the interface connection and state when the
Zome call is received we construct a context which pro-
vides additional necessary parameters to validate state
transformation:

19

Context(Zc) = {Provenance, Cn}

Provenance contains the public key of the caller along
with their cryptographic signature of the call as proof that
it originated from the agent controlling the associated
private key.
Cn is the Source Chain’s latest action at the time we
begin processing the zome call. The Zome call sees (and
potentially builds upon) a snapshot of this state through
its lifetime, and validation functions will all be called “as
at” this state. Since multiple simultaneous zome calls
might be made, tracking the “as at” enables detection of
another call having successfully changed the state of the
chain before this call completed its execution, at which
point any actions built upon the now-obsolete state may
need to be reapplied to and validated on the new state.
Zome Calls & Changing Local State First, Holochain’s
“subconscious” security system confirms the
CapTokenSecret permits the agent identified by
the Provenance to call the targeted function. It returns
a failure if not. Otherwise it proceeds to further check if
the function was explicitly permitted by the referenced
capability token.
Note on Permissions: Capability tokens function similarly
to API keys. Cap token grants are explicitly saved as
private entries on the granting agent’s source chain and
contain a secret used to call them. Cap token claims
containing the secret are saved on the calling agent’s chain
so they can be used later to make calls that execute the
capabilities that have been granted.
If the Zome call is one which alters local state (distinct
from a call that just reads from the chain or DHT state),
we must construct a bundle of state changes that will
attempt to be appended to the source chain in an atomic
commit:

∆C(Cn, Zc) =
{

a′ a′′ . . . ax

e′ e′′ . . . ex

}

where a Chain is composed of paired actions, ax, and
entries, ex.
The next chain state is obtained by appending the changes
produced by a zome call to the state of the chain at that
point.

Cn = Cn + ∆C(Cn, Zc)

If the validation rules pass for these state changes and
the current top of chain is still in state Cn then the
transaction is committed to the persistent store, and the
chain is updated as follows:

Cn =
{

aDNA . . . an

eDNA . . . en

}
If the validation rules fail, the deltas will be rejected with
an error. Also, if the chain state has changed from Cn,
we can:

1. return an error (e.g. “Chain head has moved”),
2. commit anyway, restarting the validation process

at a new “as at” C ′
n if the commit is identified

as “stateless” in terms of validation dependencies
(e.g., a tweet generally isn’t valid or invalid because
of prior tweets/state changes). We refer to any
application entry types that can be committed this
way as allowing “relaxed chain ordering”.

Note about Action/Entry Pairs: This paired structure of
the source chain holds true for all application data. How-
ever, certain action types defined by the system, whose
entry payloads are small or require metadata that is addi-
tional to primary entry content, integrate what would be
entry content as additional fields inside the action
instead of creating a separate entry which would add un-
necessary gossip on the DHT. These types are identified
and described in Appendix A, Implementation.

Countersigning
So far we have discussed individual agents taking Actions
and recording them on their Source Chains. It is also
desireable for subsets of agents to mutually consent to a
single Action by atomically recording the Action to their
chains. We achieve this through a process of Countersign-
ing, whereby a session is initiated during which the subset
of agents builds an Action that all participating agents
sign, and during which all agents promise one another
that they will not take some other action in the meantime.
There are two ways of managing the countersigning pro-
cess:

1. Assigned completion: where one preselected agent
(whom we call the Enzyme) acts as a coordinator
for ensuring completion of a signing session.

2. Randomized completion: where any agent in the
neighborhood of the Entry address (which is cryp-
tographically pseudorandom and is computed on
data contributed by each counterparty) can report
completion.

Additionally there are two contexts for making these
atomic changes across multiple chains:

1. When the change is about parties who are account-
able to the change, i.e., their role is structurally
part of the state change, as in spender/receiver of a
mutual credit transaction

2. When the change simply requires witnessing by M of
N parties, i.e., all that’s needed is a “majority” of a
group to agree on the atomicity. This allows a kind
of “micro-consensus” to be implemented in parts of

20

an application. It’s an affordance for applications
to implement a set of “super-nodes” that manage
a small bit of consensus. Note that in our current
implementation, M of N countersigning always uses
an Enzyme to manage the session completion.

Countersigning Constraints

1. All actions must be signed together; one action is
not enough to validate an atomic state change across
multiple chains.

• All parties must be able to confirm the valid-
ity of each others’s participation in that state
change (meaning each chain is in a valid state
to participate in the role/capacity which they
are engaging – e.g., a spender has the credits
they’re spending at that point in their chain).

2. The moment the enzyme or random session com-
pleter agent holds and broadcasts all the signed and
valid actions, then everyone is committed.

3. It should not be possible for a participant to with-
hold and/or corrupt data and damage/fork/freeze
another participant’s source chain.

4. It should not require many network fetches to calcu-
late state changes based on countersignatures (i.e.,
it should be possible to get a unified logical unit
– that is, multiple actions on a single entry hash
address on the DHT).

5. Participants can NOT move their chain forward
without a provable completion of the process, and
there IS a completion of the process in a reasonable
time frame

• The countersigning process should work as
closely as possible to the standard single-agent
“agent-centric network rejection of unwanted
realities”: anyone who moves forward before
the process has timed out or completed, or
anyone who tries to submit completion outside
of timeouts, will be detected as a bad fork.

Countersigning Flow Here is a high-level summary of
how a countersigning session flows:

0. Alice sends a preflight request to Bob, Carol, etc,
via a remote call.

• The preflight request includes all information
required to negotiate the session with the entry
itself, for example:

– Entry hash: What data are we agreeing
to countersign? (The contents of the en-
try are often negotiated beforehand and
communicated to all parties separately, al-
though the app data field described below
can also be used for this purpose.)

– Action base: What type is the entry we’ll
be countersigning, and will it be a Create
or an Update?

– Update/delete references: what are we
agreeing to modify?

– Session times: Will I be able to accept
the session start time, or will it cause my

chain to be invalid? Am I willing to freeze
my chain for this long?

– The agents and roles: Are these the parties
I expected to be signing with?

– App data: can point to necessary depen-
dencies or, if the contents of the entry to
be countersigned are small, the entry itself.

1. If the other parties accept, they freeze their chains
and each return a preflight response to Alice. It
contains:

• The original request.
• The state of the party’s source chain “as at”

the time they froze it.
• Their signature on the above two fields.

2. Alice builds a session data package that contains
the preflight request along with the source chain
states and signatures of all consenting parties, and
sends it to them.

3. Each party builds and commits an action that writes
the countersigned entry (including the contents of
the session data package and the entry data itself) to
their source chains. At this point, unsigned actions
are created for themselves and every other party
and full record validation is run against each action,
as though they were authoring as that agent.

4. After everything validates, each agent signs and
sends their action to the session completer – either
the enzyme (if one was elected) or the entry’s DHT
neighborhood.

5. The session completer reveals all the signed actions
as a complete set, sending it back to all parties.

6. Each signer can check for themselves that the set is
valid simply by comparing against the session entry
and preflight info. They do not have to rerun vali-
dation; they only need to check signatures, integrity,
and completeness of the action set data.

7. All counterparties now proceed to write the com-
pleted action to their source chain and publish its
data to the DHT.

8. The DHT authorities validate and store the action
and entry data as normal.

Graph DHT: Formal State Model
Holochain performs a topological transform on the set
of the various agents’ source chains into a content-
addressable graph database (graph DHT or GDHT)
sharded across many nodes who each function as au-
thoritative sources for retrieving certain data.

Fundamental Write Constraint: The DHT can never
be “written” to directly. All data enters the DHT only
by having been committed to an agent’s source chain and
then being transformed from validated local chain state
into the elements (DHT operations) required for GDHT
representation and lookup.

Structure of GDHT data: The DHT is a content-
addressable space where each piece of content is found at
the address which is the hash of its content. In addition,

21

any address in the DHT can have metadata attached to
it. This metadata is not part of the content being hashed.
Note about hashing: Holochain uses 256-bit Blake2b
hashes with the exception of one entry type, AgentPub-
Key, which is a 256-bit Ed25519 public key and its hash
function is simply the identity function. In other words,
the content of the AgentPubKey is identical to
its hash. This preserves content-addressability but also
enables agent keys to function as self-proving identifiers
for network transport and cryptographic functions like
signing or encryption.
DHT Addresses: Both Actions and Entries from source
chains can be retrieved from the DHT by either the Ac-
tionHash or EntryHash. The DHT get() function call
returns a Record, a tuple containing the most relevant
action/entry pair. Structurally, Actions “contain” their
referenced entries so that pairing is obvious when a Record
is retrieved by ActionHash. However, Actions are also at-
tached as metadata at an EntryHash, and there could be
many Actions which have created the same Entry content.
A get() function called by EntryHash returns the old-
est undeleted Action in the pair, while a get_details()
function call on an EntryHash returns all of the Actions.
Agent Addresses & Agent Activity: Technically an
AgentPubKey functions as both a content address (which
is never really used because performing a get() on the
key just returns the key itself) and a network address
to send communications to that agents. But in addition
to the content of the key stored on the DHT is meta-
data about that agent’s chain activity. In other words, a
get_agent_activity() request retrieves metadata about
their chain records and chain status.
Formally, the entire GDHT is represented as a set of
‘basis hashes’ bcx , or addresses where both content c and
metadata m may be stored:

GDHT = {d1, . . . , dn}

The data at a basis hash can consist of content and/or
metadata:

dbcx
= (cx, M)

A basis hash is the hash of the content stored at the
address:

bcx
= hash(cx)

The total set of content represented by the GDHT consists
of entries E, actions A, and external content T (where
the addresses can still store metadata and be used as
references, but the content is not stored in the DHT):

E = {e1, . . . , en}
A = {a1, . . . , an}
T = {t1, . . . , tn}

C = E
⊔

A
⊔

T

An address can hold a set of metadata:

M = {m1, . . . , mn}
mx = metadata

There may be arbitrary types of metadata. For instance,
every instance of entry content e has a set of creation
actions Ae associated with it:

∀e Mcontext = {ae1, . . . , aen}

And any address may have a set of links pointing to other
addresses, each of which is a tuple of its type, an arbitrary
tag, and a reference to the target address bcT

:

Mlink = {link1, . . . , linkn}
∃cT link = (type, tag, bcT

)

For links, we refer to an address with link metadata as a
Base and the address that the link points to as a Target.
The link can also be typed and have an optional tag
containing arbitrary content.
Topological Transform Operations: A source chain
is a hash chain of actions with entries, but these are
transformed into DHT operations which ask DHT nodes
to perform certain validation and storage tasks on the
content and metadata at the address, because we are
transforming or projecting from authorship history to a
distributed graph. Chain entries and actions are straight-
forwardly stored in the graph as nodes, as C at their
hash in the DHT, but more sophisticated operations are
also performed on existing DHT entries. For example,
when updating/deleting entries, or adding/removing links,
additional metadata is registered in parts of the DHT to
properly weave a graph.

Graph Transformation
While source chain entries and actions contain all the
information needed to construct a graphing DHT, the
data must be restructured from a linear local chain under
single authority and location, to a graph across many
nodes (where a node is an address or hash, optionally
with content) with many authorities taking responsibility
for redundantly storing content and metadata for the
entire range of nodes. In this section we focus only on

22

the transformation from source chain to DHT. The next
section will focus on the election of authoritative sources
for data.

The linking/graphing aspects must be constructed from
the state changes committed to source chains.

The process from an agent’s action to changed DHT state
is as follows:

1. An action produces a source chain record detail-
ing the nature of the action, including the context
in which it was taken (author and current source
chain state).

2. The source chain record is transformed to DHT
operations, each of which has a basis hash that
it applies to.

3. The author sends these DHT operations to the re-
spective neighborhoods of their basis hashes, where
peers who have assumed authority for the basis
hashes integrate them into an updated state for
the data at those basis hashes.

The following table shows how each action (which gets
stored on the author’s source chain as a record) is trans-
formed into multiple DHT operations. Remember an
operation corresponds with a way that the DHT state
needs to be manipulated.

For viable eventual consistency in a gossipped DHT, all
actions must be idempotent (where a second application
of an operation will not result in a changed state) and
additive/monotonic:

• The deletion of an entry creation action and its cor-
responding entry doesn’t actually delete the entry;
it marks the action as deleted. At the entry basis
hash, the delete action becomes part of a CRDT-
style “tombstone set”, and a set difference is taken
between the entry creation actions Ac and entry
deletion actions Ad that reference at the entry’s
basis hash to determine which creation actions are
still ‘live’ (Acl

= Ac − Ad). Eventually the entry
itself is considered deleted when Ac − Ad = ∅.

• The removal of a link adds the removal action to a
tombstone set at the link’s base address in a similar
fashion, subtracting the link removal actions from
the link creation actions they reference to determine
the set of live links.

• Updating an entry creation action and its corre-
sponding entry doesn’t change the content in place;
it adds a link to the original action and entry point-
ing to their replacements. One entry creation action
may validly have many updates, which may or may
not be seen by the application’s logic as a conflict
in need of resolution.

The transformation of an action is followed by sending
the operation to specific DHT basis hashes, instructing
the agents claiming authority for a range of address space
covering those basis hashes, to validate and store (inte-
grate) the operations into their respective portions of the

DHT store. Because the DHT is a graph database, what
is added is either a node or an edge. A node is a basis
hash in the DHT, while an edge is part of the addressable
content or metadata stored at a node.

Here is a legend of labels and symbols used in the dia-
grams:

• The large, gray, rounded rectangle on the left of
each row represents the agent k currently making
an action, and encompasses the data they produce.

• A label styled as do_x() is the function representing
the action being taken by the agent k. It yields a
record of the action, which is saved to the source
chain.

• an is the action that records the action. It is repre-
sented by a square.

• an−1 is the action immediately preceding the action
currently being recorded.

• E is action-specific data which is contained in a
separate entry which has its own home in the DHT.
It is represented by a circle.

• e : {. . . } is action-specific data which performs an
operation on prior content. Such data exists wholly
within the action of the record of the action.

• Overlapping shapes (primarily square actions and
circular entries) represent data that travels together
and can be seen as a single unit for the purpose
of defining what exists at a given basis hash. In
the case of an entry basis hash, where multiple
actions authoring the same entry may exist, each
entry/action pair can be seen as its own unit, or
alternatively the content at that address can be seen
as a superposition of multiple entry/action pairs.

• k is the public key of the agent taking an action.
• → is a graph edge pointing to the hash of other

content on the DHT.
• CB and CT are a link base and target, the basis

hashes of previously existing content. Any address-
able content can be the base and target of a link.
These are represented by blobs.

• Blue arrows are graph edges.
• ap and Ep are the previously existing content which

a graph edge → references, when the reference may
only pertain to a action or an entry, respectively.

• A label styled as RegisterX is a DHT operation that
adds metadata to a basis hash. A label styled as
StoreX is a DHT transform that adds addressable
content to a DHT basis hash. The payload of an
operation is contained in a gray triangle.

• Basis hashes are represented as bx in black circles,
in which the subscript x represents the kind of
addressable content stored at that basis hash. For
instance, bk is the basis hash of the author k’s agent
ID entry; that is, their public key.

• A stack of rounded rectangles represents the neigh-
borhood of the basis hash being manipulated, in
which multiple peers may be assuming authority for
the same hash.

23

• Gray arrows represent the transformation or move-
ment of data.

• Data attached to a basis hash by a line is meta-
data, while data overlapping a basis hash is primary
content.

• A green slash indicates existing data that has been
replaced by an update. A green arrow leads from
the update action to the data it replaces.

• A red X indicates existing data that has been tomb-
stoned; that is. it is marked as dead. A red arrow
leads from the delete action to the data it tomb-
stones.

Authority Election In the case of source chain entries
(and actions), it is fairly obvious that the author who
created them is the authoritative source. But part of
translating from a series of local chain states to a resilient
global data store involves identifying which nodes in the
network become the responsible authorities for holding
which DHT content.

Most existing DHT frameworks simply have nodes volun-
teer to hold specific content, and then use the DHT as a
tracking layer to map content hashes to the nodes holding
the content. But this allows content to disappear arbitrar-
ily and also creates imbalanced dynamics between people
who consume content and people who serve it (leechers
& seeders). Since Holochain is designed to function more
like a distributed database than a content distribution
network, it needs to ensure resilience and permanence of
data elements, as well as load balancing and reasonable
performance, on a network where nodes are likely coming
online and going offline frequently.

As such, Holochain doesn’t rely on nodes to volunteer
to hold specific entries, but rather to volunteer aggre-
gate capacity (e.g., holding 100MB of data rather than
arbitrarily chosen entries). Authoring nodes are responsi-
ble for publishing entries from their local DHT instance
to other nodes on the network (authorities) who will
become responsible for serving that data.

Like most DHT architectures, Holochain uses a “nearness”
algorithm to compute the “distance” between the key of
a piece of data and the key of a peer holding the data; in
our case, between the 256-bit Blake2b basis hash of the
data or metadata to be stored and the 256-bit Ed25519
public key (network address) of nodes. Basically, it is the
responsibility of the nodes nearest a basis hash to store
data and metadata for it, within an “arc” of authority of
their choosing.

Holochain’s validating, graphing, gossiping DHT imple-
mentation is called rrDHT.

rrDHT is designed with a few performance require-
ments/characteristics in mind.

1. It must have a compact and computationally simple
representational model for identifying which nodes
are responsible for which content, and which nodes
actually hold which content. (A “world model”
of what is where.)

2. It must have lookup speeds at least as fast as
Kademlia’s binary trees (O(n log n)). Current
testing shows an average of 3 hops/queries to reach
an authority with the data.

3. It must be adjustable to be both resilient and per-
formant across many DHT compositional make-ups
(reliability of nodes, different network topologies,
high/low usage volumes, etc.)

World Model: The network location space is a circle
comprising the range of unsigned 32-bit numbers, in which
the location 0 is adjacent to the location 232 − 1. It can

24

FIG. 1. Operations and state changes produced by create action

FIG. 2. Operations and state changes produced by update action

25

FIG. 3. Operations and state changes produced by delete action

FIG. 4. Operations and state changes produced by create_link action

be more precisely defined as:

L : Z mod 232

Defining this in terms of modulo arithmetic has an impor-
tant consequence for routing a publish or query request
to the correct agent, which we will explain later.

The larger 256-bit address space of the DHT, consist-
ing of 256-bit “basis hashes” B (Blake2b-256 hashes of
addressable content C, which as previously defined in-
cludes Ed25519 public keys of agents K), is mapped to
the smaller network location space via a function:

map_to_loc : B → L

26

FIG. 5. Operations and state changes produced by delete_link action

which is the XOR of 8 × 32-bit segments of the hashes.
At the storage level, the original address is still used
for addressing content and metadata, so collisions in the
smaller space are not a concern.
Using the sets B and L to denote all basis addresses and
network locations in the DHT, respectively:

|L| = 232

|B| = 2256

∴ |B| = |L| · 2256−32

Each agent has a network location lk in this 32-bit space
as well as an arc size sarc indicating how large an arc of
the location circle they are claiming authority for. The
storage arc ARClk

defines the range of basis hashes for
which a node claims authority. The arc spreads clockwise
from lk.

ARClk
: {lk, . . . , lk + sarc}

As a consequence of modulo arithmetic, agents close to 232

may end up claiming authority for data at and beyond 0;
for example, if the network location for an agent’s public
key k is 232 − 2 and their arc of authority is 20, the arc
extends to network location 18:

(232 − 2 + 20) mod 232 = 18

A node can rapidly resolve any basis hash b to the most
likely candidate for an authority pbest by comparing the
basis hash’s network location lb to all the peers they
know about (the set LP , or their “peer table”) using the
following algorithm (expressed in pseudocode):

p_best = L_P
.sort_ascending_by(l_p -> (l_b - l_p) mod 2^32)
.first()

It is then determined whether the peer is indeed an author-
ity for lb, either by relying on locally cached knowledge
of their arc or asking them directly. At this point, if
the peer is determined to not claim authority, the next
less likely candidate may be chosen, on the hope that
their arc is larger, or the most likely candidate is asked
if they know of a more likely candidate. They are in an
advantageous place to do so, as agents’ peer tables are
naturally biased toward peers that are near to them in
the network location space.
Network Location Quantization Additionally, arcs are
subjected to quantization which splits the network lo-
cation space L into disjoint subsets of a given size sq,
and to which the starting arc boundary k and arc size
sarc are also snapped. The quantized arc is then fully
represented by three numbers: the quantized chunk size
sq, the number of chunks until the start boundary kq, and
the number of chunks from start to end nq.
Peers also quantize the time dimension such that the size
of chunks of time increase quadratically as the dimension
extends into the past.
The spaces of network locations and time form two dimen-
sions of a coordinate space, and each operation can be
mapped to a point in this space using the network location
of its basis hash as the x coordinate and its authoring
time as the y coordinate.
When the coordinate space is quantized, it forms a grid.
Each agent holds a finite region of this grid, bounded by
their quantized arc, and the total set of held operations
within each grid cell is fingerprinted using a lossy algo-
rithm (such as the XOR of the hashes of all the operations
whose coordinates fall within the cell).

27

When two peers attempt to synchronize the held sets of
operations for the intersection of their two address spaces
ARClka

∩ ARClkb
, they can then simply compare their

respective fingerprints of each cell within that intersec-
tion. If the fingerprints do not match, they exchange and
compare the entire list of operation hashes they each hold.
This allows peers to more quickly compare and synchro-
nize regions of shared authority, and the quadratic nature
of quantum sizes in the time dimension allows them to
prioritize syncing of newer, more rapidly changing data,
by comparing more fingerprints from smaller time regions
for newer data, and fewer fingerprints over larger time
regions for older data.
DHT Communication Protocols So far we have described
the topological transformation between the agentic hold-
ing of state on a source chain into the shape of the shared
data for making that state visible via the DHT. Addi-
tionally we have described an addressing scheme that
makes data deterministically retrievable. Now we must
describe the communication protocols that allow agents
to come and go on the network while still maintaining
the necessary data redundancy.

Peers conduct all communication with each other using
messages of various classes and types. There are two lev-
els of abstraction for messages; the lower level establishes
peer connections in discrete network spaces and defines
basic messages for maintaining DHT state and sending ar-
bitrary application messages, while the higher level adapts
these basic message types to implement Holochain-specific
features.

There are two classes of messages, both of which are
non-blocking; that is, they are sent asynchronously and
don’t monopolize the peer connection while waiting for a
response:

• Notify messages are “fire-and-forget”; that is, they
don’t anticipate a response from the receiver.

• Request messages are wrapped in an ‘envelope’
that has a sequence ID, and anticipate a correspond-
ing response message with the same sequence ID
from the receiver.

Basic Message Types These message types exist at
the lower level.

• Notify message types
– Broadcast sends a message of one of the fol-

lowing types:
∗ User contains arbitrary, application-level

data. Here, the application in question is
Holochain rather than a specific hApp.

∗ AgentInfo advertises an agent’s current
storage arc and network transport ad-
dresses.

∗ Publish advertises that one or more DHT
operations are available for retrieval. An
arbitrary context value indicates the pub-
lishing context, which in practice is a bit

field that indicates whether it’s being pub-
lished as part of a countersigning session
and whether a validation receipt is needed.

– DelegateBroadcast sends a broadcast, but
rather than expecting the receiver to do some-
thing with it, it expects them to broadcast it in
turn to the peers in their DHT neighborhood.

– FetchOp requests the data for one or more
DHT operations, usually as a follow-up from
receiving a Publish broadcast message or
MissingOpHashes gossip message advertis-
ing that such operations are available. While
it is strictly a notify-class message, it func-
tions similarly to a request-class message in
that it anticipates a response in the form of a
PushOpData message.

– PeerUnsolicited is similar to Peer-
QueryResp below, but is initiated by a node
without being prompted.

– PushOpData sends the data for one or more
DHT operations as a response to a FetchOp
message. Each op optionally includes the quan-
tized region it belongs to if it’s being pushed
as part of a historical sync.

– Gossip is a container for messages implement-
ing various gossip strategies among nodes who
share authority for portions of the DHT’s net-
work location space.

• Request message types
– Call and CallResp allow a peer to make an

arbitrary, application-level function call to an-
other peer and receive data in response. As
with broadcast, the application in question is
Holochain.

– PeerGet and PeerGetResp allow a peer to
ask another peer if they know about a specific
agent. The response contains the same data
as an AgentInfo message.

– PeerQuery and PeerQueryResp allow a
peer to ask another peer if they know of any
agents who are currently claiming authority for
a given 32-bit network location. The response
contains zero or more AgentInfos.

DHT data is synchronized between peers two stages:

1. A node sends a peer the hashes of the DHT oper-
ations they have available. This can happen via
publish, where the initiator is creating new opera-
tions, or via gossip, where the initiator and remote
peer engage in one or more rounds of comparing the
operations they respectively hold for a shared arc
of the network location space.

2. The remote peer ‘fetches’ the data for the operations
they need but do not have.

Holochain-Specific Message Types The following
Holochain-specific message types are implemented using
the preceding basic message types. Unless otherwise

28

noted, the following messages follow a call-and-response
pattern using Call and CallResp.

• An agent uses CallRemote to attempt a remote
procedure call (RPC) to a zome function in another
peer’s cell.

• When an authority has finished validating DHT
operations as a consequence of receiving a publish
message, they send a ValidationReceipts message
to the publisher. This tells the publisher that the
authority has received the data, deemed it to be
valid, and is now holding it for serving to other peers.
This message uses the User broadcast message type.

• Get requests the addressable content stored at the
given basis hash.

• GetMeta requests all metadata stored at the given
basis hash.

• GetLinks requests only link metadata of a certain
type at the given basis hash, optionally with a filter
predicate.

• CountLinks is similar to GetLinks, but only re-
quests the count of all links matching the type and
filter predicate.

• GetAgentActivity requests all or a portion of the
‘agent activity’ metadata for the given agent ID,
which includes source chain actions, chain status
(whether it has been forked), and any outstanding
warrants collected for that agent (see the following
section for a description of warrants).

• MustGetAgentActivity requests only the por-
tion of the agent activity metadata that can be
guaranteed to be unchanging (if it exists) regardless
of the current state at the agent’s basis hash — that
is, a contiguous sequence of source chain actions,
notwithstanding any contiguous sequence that may
exist in a fork of that agent’s chain.

• There are three message types used in negotiating
a countersigning session, all of which use the User
broadcast message:

– Counterparties use CountersigningSession-
Negotiation, with a subtype of Enzyme-
Push, to send their signed Create or Up-
date action to the designated facilitator of the
session (the Enzyme) when such an agent has
been elected.

– When an Enzyme has not been elected, coun-
terparties instead use PublishCountersign
to send their action to the neighborhood of
the basis hash of the StoreEntry DHT op-
eration that they will eventually produce if
countersigning succeeds.

– When authorities have received a PublishCoun-
tersign message from all expected counter-
parties, they then send the complete list of
signed actions to all parties using Counter-
signingSessionNegotiation with a subtype
of AuthorityResponse.

Fast Push vs. Slow Heal It is important to underscore
the dual way in which data is propagated around the DHT,
and the rationale for designing Holochain in such a way.
When data is initially created with the intention of per-
sisting it in the DHT, it is sent to the neighborhoods of
the appropriate authorities using a fast push strategy.
This is the Publish broadcast message described above,
in which the creator of the data takes responsibility for
making sure it reaches a sufficient number of authorities
to ensure resilience and availability of the data. The
creator then attempts to re-send the Publish message to
more authorities until they have received a satisfactory
number of ValidationReceipts in response. (In prac-
tice, the publisher uses a combination of Broadcast and
DelegateBroadcast, the latter message type reducing
the burden on the publisher, who is unlikely to know of as
many peers in the DHT operation’s neighborhood as the
authorities do, and who may intend to go offline before
they have received a satisfactory number of validation
receipts.)
After data has been created and has ‘saturated’ the neigh-
borhood of the data’s basis hashes, however, ongoing
maintenance is required to keep the data alive as authori-
ties leave and join the network. This is done using a slow
heal strategy, in which authorities in the same neighbor-
hood regularly initiate gossip rounds21 to check each
other’s stores for new data.
Additionally, gossip is split into recent and historical
gossip, wherein peers attempt to sync data that is younger
than a certain threshold (for instance, five minutes) using
a diffing strategy (a Bloom filter) that results in fewer
unnecessary deltas being transferred, while data that is
older than this threshold can afford to use a strategy with
more noisy diffs (time/space quantization).
This multi-tiered strategy is chosen for Holochain because
of the observation that, in a typical application, the set
of data created recently changes more often than the set
of data created further in the past. In fact, as long as
peers are synchronizing frequently, the latter set should
only change when a partial or full network partition is
resolved.
A secondary concern is that, for many applications such
as social media, digital currencies, or telemetry, historical
data is less relevant and accessed less frequency than
recent data. Any discrepancy between two peers’ views
of the total data set can often in practice be tolerated.
Hence, this approach favors freshness of recent data so
that it becomes available to all peers in a timely fashion

21 While we use the term ‘gossip’ exclusively for the slow-heal strat-
egy, both fast-push and slow-heal can be considered a gossip
protocol (see https://en.wikipedia.org/wiki/Gossip_protocol), as
in both strategies a piece of data is initially communicated to
a small number of peers who then communicate it to a larger
number of their peers.

https://en.wikipedia.org/wiki/Gossip_protocol

29

expected of modern networked applications, while reso-
lution of discrepancies in historical data is treated as a
maintenance concern.

Security & Safety
Many factors contribute to a system’s ability to live up to
the varying safety and security requirements of its users.
In general, the approach taken in Holochain is to provide
affordances that take into account the many types of real-
world costs that result from adding security and safety
to systems such that application developers can match
the trade-offs of those costs to their application context.
The integrity guarantees listed in prior sections detail
the fundamental data safety that Holochain applications
provide. Two other important facets of system security
and safety come from:

1. Gating access to functions that change state, for
which Holochain provides a unified and flexible Ob-
ject Capabilities model.

2. Detecting and blocking participation of bad actors,
for which Holochain provides the affordances of
validation, warranting, and blocking.

Cryptographic Object Capabilities
To use a Holochain application, end-users must trigger
zome calls that effect local state changes on their Source
Chains. Additionally, zome functions can make calls to
other zome functions on remote nodes in the same ap-
plication network, or to other cells running on the same
conductor. All of these calls must happen in the context of
some kind of permissioning system. Holochain’s security
model for calls is based on the Object-capability security
model22, but augmented for a distributed cryptographic
context in which we use cryptographic signatures to fur-
ther prove the necessary agency for taking action and
create an additional defense against undesired capability
leakage.
Access is thus mediated by Capability Grants of four
types:

• Author: Only the agent owning the source change
can make the zome call. This capability is granted
to all zome functions.

• Assigned: Only the named agent(s) with the given
capability secret can make the zome call.

• Transferrable: Anybody with the given capability
secret can make the zome call. This is equivalent
to the common definition of object-capabilities.

• Unrestricted: Anybody can make the zome call
(no secret nor proof of authorized key needed to use
this capability).

All zome calls must be signed and supply a required
capability claim argument that MUST be checked by the

22 See https://en.wikipedia.org/wiki/Object-capability_model.

system receiving the call. Agents record capability grants
on their source chains and distribute their associated
secrets as necessary according to the application’s needs.
Receivers of secrets can record them as claims (usually
as a private entry) on their chains for later lookup. The
“agent” type grant is just the agent’s public key.

Warrants
We take that, by definition, in a fully distributed system,
there is no way for a single agent to control the actions of
other agents that comprise the system; i.e., what makes
an agent an agent is its ability to act independently. This
creates a challenge: How do agents deal with “bad-actor”
agents, as they cannot be controlled by another party?

In Holochain “bad-action” is defined by attempts by
agents to act in a way inconsistent with a DNA’s val-
idation rules. Because a DNA’s network ID is defined by
the hash of its integrity bundle (which includes both data
structures and the deterministic validation rules) we can
know that every agent in a network started with the same
rules, and thus can deterministically run those rules to
determine if any action fails validation. (Note that some
validation rules reveal bad actions not just in structure or
content of data committed, but also bad behavior. For ex-
ample, validating timestamps over contiguous sequences
of Actions enables detection of and protection against
spam and denial-of-service attacks. Holochain has its
own base validation rules as well; for instance, a source
chain must never ‘fork’, so the presence of two parallel
branching points from one prior source chain record is
considered a bad-action.)

Once a bad-action has been identified via a validation
failure, it is considered to be unambiguously a consequence
of malicious intent. The only way invalid data can be
published is by intentionally circumventing the validation
process on the author’s device when committing to chain.

Each Warrant must be self-proving. It must flag the agent
being warranted as a bad actor and include references to
set of actions which fail to validate. This might be, for
example, a single signed Action that fails validation, or
it might be a set of Actions that are issued consecutively
which exceed spam rate limits, or a set of Actions that
are issued concurrently which cause the agent’s chain to
fork.

Upon receipt of a Warrant, a node must take three actions:

1. Determine who is the bad actor. For any
Warrant, someone either performed a bad action,
or someone created a false report of bad action.
So a node must validate the referenced actions. If
they fail validation, then the reported agent is the
bad actor. If the actions pass validation, then the
Warrant author is the bad actor.

2. Block the bad actor. Add either the warranted
agent or the Warrant author to the validating node’s
peer block list. This node will no longer interact

https://en.wikipedia.org/wiki/Object-capability_model

30

with bad actor, and will reject any connection at-
tempts from that agent.

3. Report it to the bad actor’s Agent Activity
Authorities. Because nodes expect to be able to
find out if an agent is warranted by asking its neigh-
bors who validate its chain activity, those neighbors
must be notified of any warrants.

There is no global blocking of a bad actor. Each agent
must confirm for themselves whom to block. Warrants and
blocking, taken together, enable the network to defend
itself from bad actors while preserving individual agency
in the warranting process.
Note: Beyond Warrants, blocking can also theoretically be
used by apps or agents for whatever reason the application
logic or node owner may have to refuse to participate with
a node. It allows for local, voluntary self-defense against
whatever nodes someone might interpret as malicious,
or simply ending communication with peers that are no
longer relevant (e.g., a terminated employee).

Cross-DNA Composability
Holochain is designed to be used to build micro-services
that can be assembled into applications. We expect DNAs
to be written that assume the existence of other long-
running DNAs and make calls to them via the agency of
a user having installed both DNAs on their node. The
Capabilities security model described above makes sure
this kind of calling is safe and can only happen when
permissions to do so have been explicitly granted in a given
context. The HDK call function provides an affordance
to allow specification of the DNA by hash when making
the call, so the Holochain node can make a zome call to
that DNA and return the result to the calling node.

Holochain Implementation
Given the above formal description of our local state
model (Source Chain) and shared data model (Graph
DHT) we can now present a high-level implementation
specification of different components of the Holochain
architecture. The components include:

• App Virtual Machine (Ribosome)
• State Management (Workflows)
• P2P Networking (Kitsune and Holochain P2P)
• Application Interface (Conductor API)
• Secure Private Key Management (lair-keystore)

Please see the Implementation Spec (Appendix A) for
details.

Conclusion

We have described an approach to distributed systems
design that achieves increasing capacities of social coordi-
nation and coherence without requiring the bottlenecks
of global consensus, which delivers on the promise of
massively scalable and secure distributed applications

fit for heterogeneous contexts. This approach has been
fully demonstrated. Appendix A provides a complete
implementation spec.

hwp_A_implementation_spec.md

31

Appendix A: Holochain Implementation Spec v0.3.0 Beta

So far we have described the necessary components of a scalable coordination and collaboration system. We have built
an “industrial strength” implementation of this pattern suitable for real-world deployment, under the name Holochain.
Here we describe the technical implementation details that achieve the various requirements described above.
This specification assumes that the reader has understood context and background provided in the Holochain
Formalization.
Given the formal description from that document of our local state model (Source Chain) and shared data model
(Graph DHT) we can now present a high-level implementation specification of the different components of the Holochain
architecture:

• App Virtual Machine (Ribosome)
• Workflows
• P2P Networking (Kitsune)
• The Conductor
• Secure Private Key Management (lair-keystore)

Note on code fidelity: The code in this appendix may diverge somewhat from the actual implementation, partially
because the implementation may change and partially to make the intent of the following code clearer and simpler.
For instance, specialized value types that are merely wrappers around a vector of bytes are frequently replaced with
Vec<u8>.

Ribosome: The Application “Virtual Machine”
We use the term Ribosome to the name of part of the Holochain system that runs the DNA’s application code.
Abstractly, a Ribosome could be built for any programming language as long as it’s possible to deterministically
hash and run the code of the DNA’s Integrity Zome such that all agents who possess the same hash can rely on the
validation routines and structure described by that Integrity Zome operating identically for all. (In our implementation
we use WebAssembly (WASM) for DNA code, and Wasmer23 as the runtime that executes it.)
The Ribosome, as an application host, must expose a minimal set of functions to guest applications to allow them to
access Holochain functionality, and it should expect that guest applications implement a minimal set of callbacks that
allow the guest to define its entry types, link types, validation functions, and lifecycle hooks for both Integrity and
Coordinator Zomes. We will call this set of provisions and expectations the Ribosome Host API.
Additionally, it is advantageous to provide software development kits (SDKs) to facilitate the rapid development of
Integrity and Coordinator Zomes that consume the Ribosome’s host functions and provide the callbacks it expects.
In our implementation we provide SDKs for Integrity and Coordinator Zomes written in the Rust programming
language24 as Rust crates: the Holochain Deterministic Integrity (HDI) crate25 facilitates the development of Integrity
Zomes, while the Holochain Development Kit (HDK) crate26 facilitates the development of Coordinator Zomes.

Ribosome/Zome Interop ABI
Because WebAssembly code can only interface with its host system via function calls that pass simple numeric scalars,
an application binary interface (ABI) must be defined to pass rich data between the Ribosome host and the zome
guest.
The host and guest expose their functionality via named functions, and the input and output data of these functions
(a single argument and a return value) are passed as a tuple of a shared memory pointer and a length. This tuple is a
reference to the serialized data that makes up the actual input or output data.
The caller is responsible for serializing the expected function argument and storing it in a shared memory location in
the WebAssembly virtual machine instance, then passing the location and length to the callee.
The callee then accesses the data at the given location, attempts to deserialize it, and operates on the deserialized
result.
The same procedure is followed for the function’s return value, with the role of the caller and callee reversed.

23 See https://wasmer.io/.
24 See https://rust-lang.org.

25 See https://docs.rs/hdi/.
26 See https://docs.rs/hdk/.

hwp_4_formal.md
hwp_4_formal.md
https://wasmer.io/
https://rust-lang.org
https://docs.rs/hdi/
https://docs.rs/hdk/

32

Because errors may occur when the callee attempts to access and deserialize its argument data, the callee MUST
return (or rather, serialize, store, and return the address and length of) a Rust Result<T, WasmError> value, where
WasmError is a struct of this type:

struct WasmError {
file: String,
line: u32,
error: WasmErrorInner,

}

enum WasmErrorInner {
PointerMap,
Deserialize(Vec<u8>),
Serialize(SerializedBytesError),
ErrorWhileError,
Memory,
Guest(String),
Host(String),
HostShortCircuit(Vec<u8>),
Compile(String),
CallError(String),
UninitializedSerializedModuleCache,

}

The type Result<T, WasmError> is aliased to ExternResult<T> for convenience, and will be referred to as such in
examples below.

Our implementation provides a wasm_error! macro for the guest that simplifies the construction of an error result
with the correct file and line number, along with a WasmErrorInner::Guest containing an application-defined error
string.

Our implementation also provides various macros to abstract over the mechanics of this process, wrapping host
functions and guest callbacks, automatically performing the work of retrieving/deserializing and serializing/storing
input and output data, and presenting more ergonomic function signatures (in the case of host functions) or allowing
application developers to write more ergonomic function signatures (in the case of guest functions). In particular, the
#[hdk_extern] procedural macro, when applied to a guest function, handles the conversion of the bytes stored in
the memory to a map of arguments, passes those arguments, and handles the conversion of the return value to bytes
stored in memory.

Hereafter, our examples of host and guest functions will assume the use of ergonomic function signatures.

Handling Guest Functions
For any guest function, the Ribosome MUST prepare a context which includes the list of host functions which may be
called by the given type of function:

• Guest functions which are only intended to establish valid entry and link types (entry_defs and link_types)
MUST NOT be given access to any host functions.

• Guest functions which are expected to give a repeatable result for the input arguments (validate) MUST NOT
be given access to host functions whose return values vary by context.

• Guest functions which are expected to not change source chain state (validate, genesis_self_check, post_-
commit) MUST NOT be given access to host functions which change state.

For any guest functions which are permitted to change source chain state (init, recv_remote_signal, zome functions,
and scheduled functions), the Ribosome MUST:

1. Prepare a context which includes the aforementioned host function access, as well as the current source chain
state and a temporary “scratch space” into which to write new source chain state changes.

2. Check the state of the source chain; if it does not contain an InitZomesComplete action, run the init callback
and remember any state changes in the scratch space.

3. If no init callbacks fail, proceed to call the guest function, remembering any state changes in the scratch space.
4. Transform the state changes in the scratch space into DHT operations.
5. Attempt to validate the DHT operations.

33

6. If all the DHT operations are valid, persist the Actions in the scratch space to the source chain.
7. If the called function was a zome function, return the zome function call’s return value to the caller.
8. Spawn the post_commit callback in the same Coordinator Zome as the called guest function and attempt to

publish the DHT operations to the DHT.
State changes in a scratch space MUST be committed atomically to the source chain; that is, all of them MUST be
written or fail as a batch.

HDI
The Holochain Deterministic Integrity (HDI) component of the Holochain architecture comprises the functions and
capacities that are made available to app developers for building their Integrity Zomes.
Integrity Zomes provide the immutable portion of the app’s code that:

• identifies the types of entries and links able to be committed in the app,
• defines the structure of data entries, and
• defines the validation code each node runs for DHT operations produced by actions to create, update, and delete

the aforementioned entry types, as well as for a small number of system types.
The following data structures, functions and callbacks are necessary and sufficient to implement an HDI:
Core Holochain Data Types

The Action Data Type All actions MUST contain the following data elements (with the exception of the Dna action
which, because it indicates the creation of the first chain entry, does not include the action_seq nor prev_action
data elements):
{

author: AgentHash,
timestamp: Timestamp,
action_seq: u32,
prev_action: ActionHash,
...

}

Additionally, the HDI MUST provide a signed wrapper data structure that allows integrity checking in validation:
struct Signed<T>
where T: serde::Serialize {

signature: Signature,
data: T,

}

// A signature is an Ed25519 public-key signature.
struct Signature([u8; 64]);

Implementation detail: Theoretically all actions could point via a hash to an entry that would contain the “content”
of that action. But because many of the different actions entries are system-defined, and they thus have a known
structure, we can reduce unnecessary data elements and gossip by embedding the entry data for system-defined entry
types right in the action itself. However, for application-defined entry types, because the structure of the entry is not
known at compile time for Holochain, the entry data must be in a separate data structure. Additionally there are a
few system entry types (see below) that must be independently retrievable from the DHT, and thus have their own
separate system-defined variant of the Entry enum type.
Many, though not all, actions comprise intentions to create, read, update, or delete (CRUD), data on the DHT. The
action types and their additional data fields necessary are:

• Dna: indicates the DNA hash of the validation rules by which the data in this source chain agrees to abide.
struct Dna {

...
hash: DNAHash,

}

• AgentValidationPkg: indicates the creation of an entry holding the information necessary for nodes to confirm
whether an agent is allowed to participate in this DNA. This entry is contained in the action struct.

34

struct AgentValidationPkg {
...
membrane_proof: Option<SerializedBytes>

}

• InitZomesComplete: indicates the creation of the final genesis entry that marks that all zome init functions
have successfully completed (see the HDK section for details), and the chain is ready for commits. Requires no
additional data.

• Create: indicates the creation of an application-defined entry, or a system-defined entry that needs to exist as
content-addressed data.

struct Create {
...
entry_type: EntryType,
entry_hash: EntryHash,

}

// See the section on Entries for the definition of `EntryType`.

• Update: Mark an existing entry and its creation action as updated by itself. In addition to referencing the new
entry, the action data points to the old action and its entry. As this is an entry creation action like Create, it
shares many of the same fields.

struct Update {
...
original_action_address: ActionHash,
original_entry_address: EntryHash,
entry_type: EntryType,
entry_hash: EntryHash,

}

• Delete: Marks an existing entry and its creation action as deleted. The entry containing the hashes of the action
and entry to be deleted are contained in the action struct.

struct Delete {
...
deletes_address: ActionHash,
deletes_entry_address: EntryHash,

}

• CreateLink: Indicates the creation of a link.

struct CreateLink {
...
base_address: AnyLinkableHash,
target_address: AnyLinkableHash,
zome_index: u8,
link_type: u8,
tag: Vec<u8>,

}

• DeleteLink: Indicates the marking of an existing link creation action as deleted.

struct DeleteLink {
...
base_address: AnyLinkableHash,
link_add_address: ActionHash,

}

• CloseChain: indicates the creation of a final chain entry with data about a new DNA version to migrate to.

struct CloseChain {
...

35

new_dna_hash: DnaHash,
}

• OpenChain: indicates the creation of an entry with data for migrating from a previous DNA version.

struct OpenChain {
...
prev_dna_hash: DnaHash,

}

All of the CRUD actions MUST include data to implement rate-limiting so as to prevent malicious network actions. In
our implementation, all CRUD actions have a weight field of the following type:

struct RateWeight {
bucket_id: u8,
units: u8,

}

An application may specify an arbitrary number of rate limiting ‘buckets’, which can be ‘filled’ by CRUD actions until
they reach their capacity, after which point any further attempts to record an action to the Source Chain will fail until
the bucket has drained sufficiently. Each bucket has a specified capacity and drain rate, which the Integrity Zome may
specify using a rate_limits callback.

The Integrity Zome may also weigh a given CRUD action using a weigh callback, which allows both the author and
the validating authority to deterministically assign a weight to an action.

Note: This feature is not completed in the current implementation.

The Entry Data Type There are four main entry types, defined in an EntryType enum:

enum EntryType {
AgentPubKey,
App(AppEntryDef),
CapClaim,
CapGrant,

}

There is also an Entry enum that holds the entry data itself, with five variants that correspond to the four entry types:

enum Entry {
Agent(AgentHash),
App(SerializedBytes),
CounterSign(CounterSigningSessionData, SerializedBytes),
CapClaim(CapClaim),
CapGrant(ZomeCallCapGrant),

}

(Note that the App and CounterSign variants are both intended for application-defined entries.)

• AgentPubKey is used in the second genesis record of the source chain, a Create action that publishes the source
chain author’s public key to the DHT for identification and verification of authorship.

• App indicates that the entry data contains arbitrary application data of a given entry type belonging to a given
integrity zome:

struct AppEntryDef {
entry_index: u8,
zome_index: u8,
visibility: EntryVisibility,

}

struct EntryVisibility {
Public,
Private,

}

36

Its entry data can be of either Entry::App or Entry::CounterSign, where the inner data is an arbitrary vector
of bytes (typically a serialized data structure). If the data is Entry::CounterSign, the bytes are accompanied by
a struct that gives the details of the countersigning session (this struct will be dealt with in the Countersigning
section).

Note that in both these cases the data is stored using a serialization that is declared by the entry_defs()
function of the HDI.

• CapClaim indicates that the entry data contains the details of a granted capability that are necessary to exercise
such capability:

struct CapClaim {
tag: String,
grantor: AgentHash,
secret: CapSecret,

}

• CapGrant indicates that the entry data contains the details of a capability grant in the following enum and the
types upon which it depends:

struct ZomeCallCapGrant {
tag: String,
access: CapAccess,
functions: GrantedFunctions,

}

enum CapAccess {
Unrestricted,
Transferable {

secret: [u8; 64],
},
Assigned {

secret: [u8; 64],
assignees: BTreeSet<AgentHash>,

},
}

enum GrantedFunctions {
All,
Listed(BTreeSet<(ZomeName, FunctionName), Global>),

}

struct ZomeName(str);

struct FunctionName(str);

The Record Data Type A record is just a wrapper for an Action and an Entry. Because an entry may not be
present in all contexts or for all action types, the RecordEntry enum wraps the possible entry data in an appropriate
status.

struct Record {
action: SignedHashed<Action>,
entry: RecordEntry,

}

enum RecordEntry {
Present(Entry),
Hidden,
NA,
NotStored,

}

37

Links A CreateLink action completely contains the relational graph information, which would be considered the
link’s entry data if it were to have a separate entry. Note that links are typed for performance purposes, such that
when requesting links they can be retrieved by type. Additionally links have tags that can be used as arbitrary labels
on-graph as per the application’s needs. The zome_index is necessary so that the system can find and dispatch the
correct validation routines for that link, as a DNA may have multiple integrity zomes.

struct Link {
base_address: AnyLinkableHash,
target_address: AnyLinkableHash,
zome_index: ZomeIndex,
link_type: LinkType,
tag: LinkTag,

}

struct LinkTag(Vec<u8>);

Comparing this structure to a Resource Description Framework (RDF) triple:

• The base_address is the subject.
• The target_address is the object.
• The zome_index, link_type, and tag as a tuple are the predicate.

The Op Data Type The Op types that hold the chain entry data that is published to different portions of the DHT
(formally described in the Graph Transformation section of Formal Design Elements) are listed below. The integrity
zome defines a validation callback for the entry and link types it defines, and is called with an Op enum variant as its
single parameter, which indicates the DHT perspective from which to validate the data. Each variant holds a struct
containing the DHT operation payload:

• StoreRecord: executed by the record (action) authorities to store data. It contains the record to be validated,
including the entry if it is public.

struct StoreRecord {
record: Record,

}

• StoreEntry: executed by the entry authorities to store data for any entry creation action, if the entry is public.
It contains both the entry and the action in a struct similar to Record, with the exception that the entry field
is always populated.

struct StoreEntry {
action: SignedHashed<EntryCreationAction>,
entry: Entry,

}

// The following variants hold the corresponding Action struct.
enum EntryCreationAction {

Create(Create),
Update(Update),

}

• RegisterUpdate: executed by both the entry and record authorities for the old data to store metadata pointing
to the new data. This op collapses both the RegisterUpdatedRecord and RegisterUpdatedContent operations
into one for simplicity. It contains the update action as well as the entry, if it is public.

struct RegisterUpdate {
update: SignedHashed<Update>,
new_entry: Option<Entry>,

}

• RegisterDelete: executed by the entry authorities for the old entry creation and its entry to store metadata
that tombstones the data. This opp collapses both the RegisterDeletedEntryAction and RegisterDeletedBy
operations into one. It contains only the delete action.

38

struct RegisterDelete {
delete: SignedHashed<Delete>,

}

• RegisterAgentActivity: executed by agent activity authorities (the peers responsible for the author’s AgentID
entry) to validate the action in context of the author’s entire source chain. At the application developer’s
discretion, this operation can also contain the entry data.
struct RegisterAgentActivity {

action: SignedHashed<Action>,
cached_entry: Option<Entry>,

}

• RegisterCreateLink: executed by the authorities for the link’s base address to store link metadata.
struct RegisterCreateLink {

create_link: SignedHashed<CreateLink>,
}

• RegisterDeleteLink: executed by the authorities for the link’s base address to store metadata that tombstones
the link.
struct RegisterDeleteLink {

delete_link: SignedHashed<DeleteLink>,
create_link: CreateLink,

}
Hash Data Structures Holochain relies on being able to distinguish and use hashes of the various Holochain fundamental
data types. The following hash types must exist:

• ActionHash: The Blake2b-256 hash of a serialized Action variant, used for DHT addressing.
• AgentHash: The Ed25519 public key of an agent, used for referencing the agent.
• DhtOpHash: The Blake2b-256 hash of a serialized DhtOp variant, used for comparing lists of held operations

during syncing between authorities.
• DnaHash: The hash of all the integrity zomes and associated modifiers, when serialized in a consistent manner.
• EntryHash: The hash of the bytes of a Entry variant, according to the hashing rules of that variant (the

Blake2b-256 hash of the serialized variant in all cases except Entry::Agent, which is the public key). Used for
DHT addressing.

• ExternalHash: This type is used for creating links in the graph DHT to entities that are not actually stored in
the DHT. It is simply an arbitrary 32 bytes.

• WasmHash: The Blake2b-256 hash of the WebAssembly bytecode of a zome, used by the Ribosome to look up
and call zomes.

Furthermore, there are two composite hash types, which are unions of two or more of the preceding hash types:
• AnyDhtHash, the enum of EntryHash and ActionHash, is the union of all ‘real’ addressable content on the DHT;

that is, content that can actually be written.
• AnyLinkableHash, the enum of EntryHash, ActionHash, and ExternalHash, is the union of all real and imaginary

addressable content on the DHT; that is, it includes external hashes.
All of these hash types are derived from a generic struct, HoloHash<T>, which holds the three-byte hash type signifier
and the 32 bytes of the hash (the ‘core’ of the hash), along with the 4-byte network location. For those hash types
that are the basis of addressable content (AnyDhtHash), the hash alone is sufficient to uniquely identify a DHT basis
from which a network location can be computed, while the type signifier ensures type safety in all struct fields and
enum variant values that reference the hash. The four-byte network location is computed from the hash core and
stored along with the preceding 36 bytes as a matter of convenience.
The three-byte type signifiers are as follows:

Type Hexadecimal Base64

ActionHash 0x842924 hCkk
AgentHash 0x842024 hCAk
DhtOpHash 0x842424 hCQk
DnaHash 0x842d24 hC0k
EntryHash 0x842124 hCEk

39

Type Hexadecimal Base64

ExternalHash 0x842f24 hC8k
WasmHash 0x842a24 hCok

Application Type Definition Callbacks In order for the Ribosome to successfully dispatch validation to the correct
integrity zome, each integrity zome in a DNA should register the entry and link types it is responsible for validating.
The HDI MUST allow the integrity zome to implement the following functions:

• entry_defs(()) -> ExternResult<EntryDefsCallbackResult>: Called to declare the type and structure of
the application’s entry types. The return value is:

enum EntryDefsCallbackResult {
Defs(EntryDefs),

}

struct EntryDefs(Vec<EntryDef>);

struct EntryDef {
id: EntryDefId,
visibility: EntryVisibility,
required_validations: u8,
cache_at_agent_activity: bool,

}

enum EntryDefId {
App(str),
CapClaim,
CapGrant,

}

This function can be automatically generated using the #[hdk_entry_types] procedural macro on an enum of
variants that each hold a type that can be serialized and deserialized.

• link_types(()) -> ExternResult<Vec<u8>>: called to declare the link types that will be used by the applica-
tion. This function can be automatically generated using the #[hdk_link_types] procedural macro on an enum
of all link types.

Note: In our implementation these functions are automatically generated by Rust macros. This gives us the benefit of
consistent, strongly typed entry and link types from the point of definition to the point of use. Thus it’s very easy to
assure that any application data that is being stored adheres to the entry and link type declarations.
Functions Necessary for Application Validation The HDI MUST allow for hApp developers to specify a validate(Op)
-> ExternResult<ValidateCallbackResult> callback function for each integrity zome. This callback is called by
the Ribosome in the correct context for the Op as described above in the graph DHT formalization, so that the data
associated with the Op will only be stored if it meets the validation criteria.

The HDI MUST also allow for hApp developers to specify a genesis_self_check(GenesisSelfCheckData) ->
ExternResult<ValidateCallbackResult> callback for each integrity zome. This callback is called by the Ribosome
before attempting to join a network, to perform sanity checks on the genesis records. This callback is limited in its
ability to validate genesis data, because it MUST NOT be able to make network calls. Nevertheless, it is useful to
prevent a class of errors such as incorrect user entry of membrane proofs from inadvertently banning a new agent from
the network. The input payload is defined as:

struct GenesisSelfCheckData {
membrane_proof: Option<SerializedBytes>,
agent_key: AgentHash,

}

The HDI MUST provide the following functions for application authors to retrieve dependencies in validation:

• must_get_agent_activity(AgentPubKey, ChainFilter) -> ExternResult<Vec<RegisterAgentActivity>>:
This function allows for deterministic validation of chain activity by making a hash-bounded range of an agent’s
chain into a dependency for something that is being validated. The second parameter is defined as:

40

struct ChainFilter {
chain_top: ActionHash,
filters: ChainFilters,
include_cached_entries: bool

}

enum ChainFilters {
ToGenesis,
Take(u32),
Until(HashSet<ActionHash>),
Both(u32, HashSet<ActionHash>),

}

The vector element type in the return value is defined as:
struct RegisterAgentActivity {

action: SignedHashed<Action>,
cached_entry: Option<Entry>,

}

• must_get_action(ActionHash) -> ExternResult<SignedHashed<Action>: Get the Action at a given action
hash, along with its author’s signature.

• must_get_entry(EntryHash) -> ExternResult<HoloHashed<Entry>>: Get the Entry at a given hash.
• must_get_valid_record(ActionHash) -> ExternResult<Record>: Attempt to get a valid Record at a given

action hash; if the record is marked as invalid by any contacted authorities, the function will fail.
The HDI MUST implement two hashing functions that calculate the hashes of Actions and Entrys so that hash values
can be confirmed in validation routines.

• hash_action(Action) -> ActionHash
• hash_entry(Entry) -> EntryHash

The HDI MUST implement two introspection functions that return data about the DNA’s definition and context that
may be necessary for validation:

• dna_info() -> ExternResult<DnaInfo>: returns information about the DNA:
struct DnaInfo {

name: String,
hash: DnaHash,
modifiers: DnaModifiers,
zome_names: Vec<ZomeName>,

}

struct DnaModifiers {
network_seed: String,
properties: SerializedBytes,
origin_time: Timestamp,
quantum_time: Duration,

}

• zome_info() -> ExternResult<ZomeInfo>: returns information about the integrity zome:
struct ZomeInfo {

name: ZomeName,
id: ZomeIndex,
properties: SerializedBytes,
entry_defs: EntryDefs,
extern_fns: Vec<FunctionName>,
zome_types: ScopedZomeTypesSet,

}

struct ZomeIndex(u8);

41

struct ScopedZomeTypesSet {
entries: Vec<(ZomeIndex, Vec<EntryDefIndex>)>,
links: Vec<(ZomeIndex, Vec<LinkType>)>,

}

struct EntryDefIndex(u8);

struct LinkType(u8);

Note: properties consists of known application-specified data that is specified at install time (both at the DNA and
zome levels) that may be necessary for validation or any other application-defined purpose. Properties are included
when hashing the DNA source code, thus allowing parametrized DNAs and zomes.
The HDI MUST implement a function that validation code can use to verify cryptographic signatures:

• verify_signature<I>(AgentPubKey, Signature, I) -> ExternResult<bool> where I: Serialize:
Checks the validity of a signature (a Vec<u8> of bytes) upon the data it signs (any type that implements the
Serialize trait, allowing it to be reproducibly converted into a vector of bytes, against the public key of the
agent that is claimed to have signed it.

HDK
The HDK contains all the functions and callbacks needed for Holochain application developers to build their Coordination
Zomes. Note that the HDK is a superset of the HDI. Thus all of the functions and data types available in the HDI are
also available in the HDK.
Initialization The HDK MUST allow application developers to define an init() ->
ExternResult<InitCallbackResult> callback in each coordinator zome. All init callbacks in all coordina-
tor zomes MUST complete successfully, and an InitZomesComplete action MUST be written to a cell’s source
chain, before zome functions (see following section) may be called. Implementations SHOULD allow this to happen
lazily; that is, a zome function is permitted to be called before initialization, and the call zome workflow runs the
initialization workflow in-process if InitZomesComplete does not exist on the source chain yet.
The return value of the callback is defined as:
enum InitCallbackResult {

Pass,
Fail(String),
UnresolvedDependencies(UnresolvedDependencies),

}

If the return value of all init callbacks is Pass, the actions in the scratch space prepared for the initialization workflow
are written to the source chain, followed by the InitZomesComplete action, and execution of zome functions in the
cell may proceed.
If the return value of at least one init callback is Fail, the cell is put into a permanently disabled state.
If the return value of at least one init callback is UnresolvedDependencies, the scratch space prepared for the
initialization workflow is discarded, and the initialization workflow will be attempted upon next zome function call.
This permits a cell to gracefully handle a temporary poorly connected state on cell instantiation.
Arbitrary API Functions (Zome Functions) The HDK MUST allow application developers to define and expose
functions in their Coordinator Zomes with arbitrary names, input payloads, and return payloads that serve as the
application’s API. While the content of the return payload of these functions may be arbitrary data, it MUST be
wrapped in a Result<T, WasmError>, where T is the return payload.
As function calls across the host/guest interface only deal with arbitrary bytes stored in memory address ranges, the
HDK SHOULD provide an abstraction to allow developers to define functions in a more natural manner, with typed
input and return payloads. We have provided a #[hdk_extern] procedural macro that facilitates this abstraction,
wrapping the following function definition with the necessary machinery to load and deserialize the input data and
serialize and store the return data.
The Conductor MUST also receive calls to these zome functions, enforce capability restrictions, dispatch the call to
the correct WASM module, and handle side effects, error conditions, and the called function’s return value. These
calls MAY come from external clients, other zomes in the same cell, other cells in the same application, or other agents
in the same DHT.

42

Post-Commit Callback The HDK MUST allow application developers to define a post_commit(Vec<SignedAction>)
-> ExternResult<()> callback in their Coordinator Zomes which receives a sequence of Actions committed to the
source chain. The purpose of this callback is to provide a way of triggering follow-up activities when an atomic commit
has definitively succeeded in persisting new Actions.

The Conductor MUST call this callback with all the Actions successfully committed in any guest function that is
permitted to persist state changes to the source chain. The Conductor MUST NOT permit this callback to make
further state changes, but it MAY allow it to access any other host functions, including calling or scheduling other
functions which may make state changes in their own call contexts.
Chain Operations The HDK MUST implement the following functions that create source chain entries:

• create(CreateInput) -> ExternResult<ActionHash>: Records the creation of a new application entry. The
CreateInput parameter is defined as:

struct CreateInput {
entry_location: EntryDefLocation,
entry_visibility: EntryVisibility,
entry: Entry,
chain_top_ordering: ChainTopOrdering,

}

enum EntryDefLocation {
App(AppEntryDefLocation),
CapClaim,
CapGrant,

}

struct AppEntryDefLocation {
zome_index: ZomeIndex,
entry_def_index: EntryDefIndex,

}

enum ChainTopOrdering {
Relaxed,
Strict,

}

The EntryVisibility parameter specifies whether the entry is private or should be published to the DHT,
and the ChainTopOrdering parameter specifies whether the call should fail if some other zome call with chain
creation actions completes before this one, or whether it’s ok to automatically replay the re-write the action on
top of any such chain entries.

In our implementation, the create function accepts any value that can be converted to a CreateInput, allowing
most of these fields to be populated by data that was generated by the #[hdk_entry_types] macro and other
helpers. This is accompanied by convenience functions for create that accept app entries, capability grants, or
capability claims.

• update(UpdateInput) -> ExternResult<ActionHash>: Records the marking of an existing entry and its
creation action as updated. Requires the ActionHash that created the original entry to be provided. The
UpdateInput parameter is defined as:

struct UpdateInput {
original_action_address: ActionHash,
entry: Entry,
chain_top_ordering: ChainTopOrdering,

}

Many fields necessary for create are unnecessary for update, as the new entry is expected to match the entry
type and visibility of the original. Similar to create, in our implementation there are convenience functions to
help with constructing UpdateInputs for app entries and capability grants.

• delete(DeleteInput) -> ExternResult<ActionHash>: Records the marking of an entry and its creation
action as deleted. The DeleteInput parameter is defined as:

43

struct DeleteInput {
deletes_action_hash: ActionHash,
chain_top_ordering: ChainTopOrdering,

}

• create_link(AnyLinkableHash, AnyLinkableHash, ScopedLinkType, LinkTag) ->
ExternResult<ActionHash>: Records the creation of a link of the given ScopedLinkType between the
hashes supplied in the first and second arguments, treating the first hash as the base and the second as the
target. The fourth LinkTag parameter is a struct containing a Vec<u8> of arbitrary application bytes.

• delete_link(ActionHash) -> ExternResult<ActionHash>: Records the marking of a link creation action as
deleted, taking the original link creation action’s hash as its input.

• query(ChainQueryFilter) -> ExternResult<Vec<Record>>: search the agent’s local source chain according
to a query filter returning the Records that match. The ChainQueryFilter parameter is defined as:
struct ChainQueryFilter {

sequence_range: ChainQueryFilterRange,
entry_type: Option<Vec<EntryType>>,
entry_hashes: Option<HashSet<EntryHash>>,
action_type: Option<Vec<ActionType>>,
include_entries: bool,
order_descending: bool,

}

enum ChainQueryFilterRange {
// Retrieve all chain actions.
Unbounded,
// Retrieve all chain actions between two indexes, inclusive.
ActionSeqRange(u32, u32),
// Retrieve all chain actions between two hashes, inclusive.
ActionHashRange(ActionHash, ActionHash),
// Retrieve the n chain actions up to and including the given hash.
ActionHashTerminated(ActionHash, u32),

}
Capabilities Management The HDK includes convenience functions over create, update, and delete for operating
on capability grants and claims:

• create_cap_grant(ZomeCallCapGrant) -> ExternResult<ActionHash>
• create_cap_claim(CapClaim) -> ExternResult<ActionHash>
• update_cap_grant(ActionHash, ZomeCallCapGrant) -> ExternResult<ActionHash>
• delete_cap_grant(ActionHash) -> ExternResult<ActionHash>

In addition to these, a function is provided for securely generating capability secrets:
• generate_cap_secret() -> ExternResult<[u8; 64]>

It is the application’s responsibility to retrieve a stored capability claim using a host function such as query and supply
it along with a remote call to another agent. As the Conductor at the receiver agent automatically checks and enforces
capability claims supplied with remote call payloads, there is no need to retrieve and check a grant against a claim.
DHT Data Retrieval

• get(AnyDhtHash, GetOptions) -> ExternResult<Option<Record>>: Retrieve a Record from the DHT by its
EntryHash or ActionHash. The content of the record return is dependent on the type of hash supplied:

– If the hash is an Entry hash, the authority will return the entry content paired with its oldest-timestamped
Action.

– If the hash is an Action hash, the authority will return the specified action.
The GetOptions parameter is defined as:
struct GetOptions {

strategy: GetStrategy,
}

44

enum GetStrategy {
Network,
Local,

}

If strategy is GetStrategy::Network, the request will always go to other DHT authorities, unless the the
requestor is an authority for that basis hash themselves. If strategy is GetStrategy::Local, the request will
always favor the requestor’s local cache and will return nothing if the data is not cached.

• get_details(AnyDhtHash, GetOptions) -> ExternResult<Option<Details>>: Retrieve all of the address-
able data and metadata at a basis hash. The return value is a variant of the following enum, depending on the
data stored at the hash:

enum Details {
Record(RecordDetails),
Entry(EntryDetails),

}

struct RecordDetails {
record: Record,
validation_status: ValidationStatus,
deletes: Vec<SignedHashed<Action>>,
updates: Vec<SignedHashed<Action>>,

}

enum ValidationStatus {
// The `StoreRecord` operation is valid.
Valid,
// The `StoreRecord` operation is invalid.
Rejected,
// Could not validate due to missing data or dependencies, or an
// exhausted WASM execution budget.
Abandoned,
// The action has been withdrawn by its author.
Withdrawn,

}

struct EntryDetails {
entry: Entry,
actions: Vec<SignedHashed<Action>>,
rejected_actions: Vec<SignedHashed<Action>>,
deletes: Vec<SignedHashed<Action>>,
updates: Vec<SignedHashed<Action>>,
entry_dht_status: EntryDhtStatus,

}

enum EntryDhtStatus {
// At least one `StoreEntry` operation associated with the entry is
// valid, and at least one entry creation action associated with it has
// not been deleted.
Live,
// All entry creation actions associated with the entry have been marked
// as deleted.
Dead,
// All `StoreEntry` operations are waiting validation.
Pending,
// All `StoreEntry` operations associated with the entry are invalid.
Rejected,
// All attempts to validate all `StoreEntry` operations associated with
// the entry have been abandoned.

45

Abandoned,
// All entry creation actions associated with the entry have been
// withdrawn their authors.
Withdrawn,
// The entry data has been purged.
Purged,

}

• get_links(GetLinksInput) -> ExternResult<Vec<Link>>: Retrieve a list of links that have been placed on
any base hash on the DHT, optionally filtering by the links’ types and/or tags. The returned list contains only
live links; that is, it excludes the links that have DeleteLink actions associated with them. The GetLinksInput
parameter is defined as:
struct GetLinksInput {

base_address: AnyLinkableHash,
link_type: LinkTypeFilter,
get_options: GetOptions,
tag_prefix: Option<Vec<u8>>,
after: Option<Timestamp>,
before: Option<Timestamp>,
author: Option<AgentHash>,

}

enum LinkTypeFilter {
// One link type
Types(Vec<(ZomeIndex, Vec<LinkType>)>),
// All link types from the given integrity zome
Dependencies(Vec<ZomeIndex>),

}

• get_link_details(AnyLinkableHash, LinkTypeFilter, Option<LinkTag>, GetOptions) ->
ExternResult<LinkDetails>: Retrieve the link creation and deletion actions at a base. The return
value is defined as:
struct LinkDetails(Vec<(SignedActionHashed, Vec<SignedActionHashed>)>);

where each element in the vector is a CreateLink action paired with a vector of any DeleteLink actions that
apply to it.

• count_links(LinkQuery) -> ExternResult<usize>: Retrieve only the count of live links matching the link
query.

• get_agent_activity(AgentPubKey, ChainQueryFilter, ActivityRequest) ->
ExternResult<AgentActivity>: Retrieve the activity of an agent from the agent’s neighbors on the
DHT. This functions similar to query, but operates on the source chain of an agent other than the requestor.
The ActivityRequest parameter is defined as:
enum ActivityRequest {

Status,
Full,

}

The AgentActivity return value is defined as:
struct AgentActivity {

valid_activity: Vec<(u32, ActionHash)>,
rejected_activity: Vec<(u32, ActionHash)>,
status: ChainStatus,
highest_observed: Option<(u32, ActionHash)>,
warrants: Vec<Warrant>,

}

enum ChainStatus {
Empty,

46

Valid(ChainHead),
Forked(ChainFork),
Invalid(ChainHead),

}

struct ChainHead {
action_seq: u32,
hash: ActionHash,

}

struct ChainFork {
fork_seq: u32,
first_action: ActionHash,
second_action: ActionHash,

}

Depending on the value of the ActivityRequest argument, status may be the only populated field.
• get_validation_receipts(GetValidationReceiptsInput) -> ExternResult<Vec<ValidationReceiptSet>>:

Retrieve information about how ‘persisted’ the DHT operations for an Action are. This is meant to provide
end-user feedback on whether an agent’s authored data can easily be retrieved by other peers. The input
argument is defined as:
struct GetValidationReceiptsInput {

action_hash: ActionHash,
}

The return value is defined as a vector of:
struct ValidationReceiptSet {

// The DHT operation hash that this receipt is for.
op_hash: DhtOpHash,
// The type of the op that was validated. This represents the underlying
// operation type and does not map one-for-one to the `Op` type used in
// validation.
op_type: String,
// Whether this op has received the required number of receipts.
receipts_complete: bool,
// The validation receipts for this op.
receipts: Vec<ValidationReceiptInfo>,

}
Introspection

• agent_info() -> ExternResult<AgentInfo>: Get information about oneself (that is, the agent currently
executing the zome function) and one’s source chain, where the return value is defined as:
struct AgentInfo {

agent_initial_pubkey: AgentHash,
agent_latest_pubkey: AgentHash,
chain_head: (ActionHash, u32, Timestamp),

}

The initial and latest public key may vary throughout the life of the source chain, as an AgentPubKey is an
entry which may be updated like other entries. Updating a key entry is normally handled through a DPKI
implementation (see Human Error section of System Correctness: Confidence).

• call_info() -> ExternResult<CallInfo>: Get contextual information about the current zome call, where
the return value is defined as:
struct CallInfo {

provenance: AgentHash,
function_name: FunctionName,
// A snapshot of the source chain state at zome call time.
as_at: (ActionHash, u32, Timestamp),

47

// The capability grant under which the call is permitted.
cap_grant: CapGrant,

}

• dna_info() -> ExternResult<DnaInfo> (see HDI)

• zome_info() -> ExternResult<ZomeInfo> (see HDI)
Modularization and Composition Zomes are intended to be units of composition for application developers. Thus
zome functions MUST be able to make calls to other zome functions, either in the same zome or in other zomes or
even DNAs:

• call<I>(CallTargetCell, ZomeName, FunctionName, Option<CapSecret>, I) -> ZomeCallResponse
where I: Serialize: Call a zome function in a local cell, supplying a capability and a payload containing the
argument to the receiver. The CallTargetCell parameter is defined as:

enum CallTargetCell {
// Call a function in another cell by its unique conductor-local ID, a
// tuple of DNA hash and agent public key.
OtherCell(CellId),
// Call a function in another cell by the role name specified in the app
// manifest. This role name may be qualified to a specific clone of the
// DNA that fills the role by appending a dot and the clone's index.
OtherRole(String),
// Call a function in the same cell.
Local,

}

struct CellId(DnaHash, AgentPubKey);
Clone Management The HDK SHOULD implement the ability for cells to modify the running App by adding,
enabling, and disabling clones of existing DNA.

• create_clone_cell(CreateCloneCellInput) -> ExternResult<ClonedCell>: Create a clone of an existing
DNA installed with the App, specifying new modifiers and optionally a membrane proof. The input parameter is
defined as:

struct CreateCloneCellInput {
// The ID of the cell to clone.
cell_id: CellId,

// Modifiers to set for the new cell. At least one of the modifiers must
// be set to obtain a distinct hash for the clone cell's DNA.
modifiers: DnaModifiersOpt<YamlProperties>,
// Optionally set a proof of membership for the clone cell.
membrane_proof: Option<MembraneProof>,
// Optionally a name for the DNA clone.
name: Option<String>,

}

struct DnaModifiersOpt<P> {
network_seed: Option<String>,
properties: Option<P>,
origin_time: Option<Timestamp>,
// The smallest size of time regions for historical gossip.
quantum_time: Option<Duration>,

}

type MembraneProof = SerializedBytes;

Implementations MUST NOT enable the clone cell until enable_clone_cell is subsequently called.

The return value is defined as:

struct ClonedCell {

48

cell_id: CellId,
// A conductor-local clone identifier.
clone_id: CloneId,
// The hash of the DNA that this cell was instantiated from.
original_dna_hash: DnaHash,
// The DNA modifiers that were used to instantiate this clone cell.
dna_modifiers: DnaModifiers,
// The name the cell was instantiated with.
name: String,
// Whether or not the cell is running.
enabled: bool,

}

• disable_clone_cell(DisableCloneCellInput) -> ExternResult<()>: Disable an active clone cell in the
current app. The input is defined as:
struct DisableCloneCellInput {

clone_cell_id: CloneCellId,
}

enum CloneCellId {
// Clone ID consisting of role name and clone index.
CloneId(CloneId),
// Cell id consisting of DNA hash and agent key.
CellId(CellId),

}

// A conductor-local unique identifier for a clone, consisting of the role
// name from the app manifest and a clone index, delimited by a dot.
struct CloneID(String);

• enable_clone_cell(EnableCloneCellInput) -> ExternResult<ClonedCell>: Enable a cloned cell in the
current app. The input is defined as:
struct EnableCloneCellInput {

clone_cell_id: CloneCellId,
}

• delete_clone_cell(DeleteCloneCellInput) -> ExternResult<()>: Delete an existing clone cell in the cur-
rent app. The input is defined as:
struct DeleteCloneCellInput {

clone_cell_id: CloneCellId,
}

Scheduling The HDK SHOULD implement the ability for zome calls to be scheduled for calling in the future, which
allows for important application functionality like automatic retries.

• schedule(str) -> ExternResult<()>: Schedule a function for calling on the next iteration of the conductor’s
scheduler loop, and thereafter on a schedule defined by the called function. To be schedulable, a function
must have the signature (Schedule) -> Option<Schedule>, receiving the schedule on which it was called and
returning the schedule (if any) on which it wishes to continue to be called. A Schedule is defined as:
enum Schedule {

Persisted(String),
Ephemeral(Duration),

}

Where the value of Persisted is a UNIX crontab entry and the value of Ephemeral is a duration until the next
time. Persisted schedules survive conductor restarts and unrecoverable errors, while ephemeral schedules will not.
If None is returned instead of Some(Schedule), the function will be unscheduled.
A scheduled function MUST also be infallible; that is, it must be marked with the macro #[hdk_-
extern(infallible)] and return an Option<Schedule> rather than an ExternResult<Option<Schedule>>.
This is because there is no opportunity for user interaction with the result of a scheduled function.

49

P2P Interaction Agents MUST be able to communicate directly with other agents. They do so simply by making
zome calls to them. Holochain systems MUST make this possible by sending a call requests over the network and
awaiting a response. For performance reasons the HDK SHOULD also make possible sending of best-effort in parallel
signals for which no return result is awaited.

• call_remote<I>(AgentPubKey, ZomeName, FunctionName, Option<CapSecret>, I) ->
ExternResult<ZomeCallResponse> where I: Serialize: Call a zome function on a target agent and
zome, supplying a capability secret and an arguments payload. The return value is defined as:

enum ZomeCallResponse {
Ok(ExternIO),
Unauthorized(ZomeCallAuthorization, CellId, ZomeName, FunctionName, AgentHash),
NetworkError(String),
CountersigningSession(String),

}

enum ZomeCallAuthorization {
Authorized,
BadSignature,
BadCapGrant,
BadNonce(String),
BlockedProvenance,

}

• send_remote_signal<I>(Vec<AgentPubKey>, I) -> ExternResult<()> where I: Serialize: Send a best-
effort signal to a list of agents. Implementations SHOULD provide this function, SHOULD implement it by
convention as a workflow that sends messages to the receivers as a remote call to a zome function with the
signature recv_remote_signal(SerializedBytes) -> ExternResult<()> in the same coordinator zome as
the function that calls this host function, and MUST NOT await responses from the receivers. Implementations
MUST spawn a separate thread to send the signals in order to avoid blocking execution of the rest of the zome
function call.

Countersigning In order to safely facilitate the peer interaction necessary to complete a countersigning among multiple
agents, the Ribosome and HDK MUST implement the following functions:

• accept_countersigning_preflight_request(PreflightRequest) -> ExternResult<PreflightRequestAcceptance>:
Lock the local chain to commence a countersigning session. The PreflightRequestAcceptance MUST be sent
back to the session initiator so that the corresponding entry can be built for everyone to sign. This function
MUST be called by every signer in the signing session. The details of how are left to the application developer
(although concurrent remote calls are probably the simplest mechanism to distribute and accept preflight requests
before the session times out). The preflight request is defined as (see discussion above on countersigning):

struct PreflightRequest {
// The hash of the app entry, as if it were not countersigned. The final
// entry hash will include the countersigning session data.
app_entry_hash: EntryHash,
// The agents that are participating in this countersignature session.
signing_agents: Vec<(AgentHash, Vec<Role>)>,
// The optional additional M of N signers. If there are additional
// signers then M MUST be the majority of N. If there are additional
// signers then the enzyme MUST be used and is the first signer in BOTH
// signing_agents and optional_signing_agents.
optional_signing_agents: Vec<(AgentHash, Vec<Role>)>,
// The M in the M of N signers. M MUST be strictly greater than than
// N / 2 and NOT larger than N.
minimum_optional_signing_agents: u8,
// The first signing agent (index 0) is acting as an enzyme. If true AND
// optional_signing_agents are set then the first agent MUST be the same
// in both signing_agents and optional_signing_agents.
enzymatic: bool,
// The window in which countersigning must complete. Session actions
// MUST all have the same timestamp, which is the session offset.

50

session_times: CounterSigningSessionTimes,
// The action information that is shared by all agents. Contents depend
// on the action type, create, update, etc.
action_base: ActionBase,
// Optional arbitrary bytes that can be agreed to.
preflight_bytes: PreflightBytes,

}

struct CounterSigningSessionTimes {
start: Timestamp,
end: Timestamp,

}

enum ActionBase {
Create(CreateBase),
Update(UpdateBase),

}

struct CreateBase {
entry_type: EntryType,

}

struct UpdateBase {
original_action_address: ActionHash,
original_entry_address: EntryHash,
entry_type: EntryType,

}

// An arbitrary application-defined role in a session.
struct Role(u8);

The return value is defined as:

enum PreflightRequestAcceptance {
Accepted(PreflightResponse),
UnacceptableFutureStart,
UnacceptableAgentNotFound,
Invalid(String),

}

struct PreflightResponse {
request: PreflightRequest,
agent_state: CounterSigningAgentState,
signature: Signature,

}

struct CounterSigningAgentState {
// The index of the agent in the preflight request agent vector.
agent_index: u8,
// The current (frozen) top of the agent's local chain.
chain_top: ActionHash,
// The action sequence of the agent's chain top.
action_seq: u32,

}

• session_times_from_millis(u64) -> ExternResult<CounterSigningSessionTimes>: Create the session
times that are included in the PreflightRequest and bound the countersigning session temporally. This
function returns a session start timestamp is “now” from the perspective of the system clock of the session
initiator calling this function, and a session end timestamp that is “now” plus the given number of milliseconds.
The countersigning parties will check these times against their own perspectives of “now” as part of accepting

51

the preflight request, so all system clocks need to be roughly aligned, and the ambient network latency must fit
comfortably within the session duration.

Cryptography The HDK MUST provide mechanisms for agents to sign and check the signatures of data. It SHOULD
provide mechanisms to encrypt and decrypt data and return pseudo-random data:

• sign<D>(AgentPubKey, D) -> ExternResult<Signature> where D: Serialize: Given a public key, request
from the key-management system a signature for the given data by the corresponding private key.

• verify_signature<I>(AgentPubKey, Signature, I) -> ExternResult<bool> where I: Serialize: (see
HDI)

• x_salsa20_poly1305_shared_secret_create_random(Option<XSalsa20Poly1305KeyRef>) ->
ExternResult<XSalsa20Poly1305KeyRef>: Generate a secure random shared secret suitable for encrypting
and decrypting messages using NaCl’s secretbox27 encryption algorithm, and store it in the key-management
system. An optional key reference ID may be given; if this ID already exists in the key-management system, an
error will be returned. If no ID is given, one will be generated and returned. The key reference is defined as:
struct XSalsa20Poly1305KeyRef(u8);

• x_salsa20_poly1305_encrypt(XSalsa20Poly1305KeyRef, Vec<u8>) -> ExternResult<XSalsa20Poly1305EncryptedData>:
Given a reference to a symmetric encryption key stored in the key-management service, request the encryption
of the given bytes with the key. The return value is defined as:
struct XSalsa20Poly1305EncryptedData {

nonce: [u8; 24],
encrypted_data: Vec<u8>,

}

• x_salsa20_poly1305_decrypt(XSalsa20Poly1305KeyRef, XSalsa20Poly1305EncryptedData) ->
ExternResult<Option<Vec<u8>>: Given a reference to a symmetric encryption key, request the decryption of
the given bytes with the key.

• create_x25519_keypair() -> ExternResult<X25519PubKey>: Create an X25519 key pair suitable for encrypt-
ing and decrypting messages using NaCl’s box28 algorithm, and store it in the key-management service. The
return value is defined as:
struct X25519PubKey([u8; 32]);

• x_25519_x_salsa20_poly1305_encrypt(X25519PubKey, X25519PubKey, Vec<u8>) ->
ExternResult<XSalsa20Poly1305EncryptedData>: Given X25519 public keys for the sender and recip-
ient, attempt to encrypt the given bytes via the box algorithm using the sender’s private key stored in the
key-management service and the receiver’s public key.

• x_25519_x_salsa20_poly1305_decrypt(X25519PubKey, X25519PubKey, Vec<u8>) ->
ExternResult<XSalsa20Poly1305EncryptedData>: Given X25519 public keys for the recipient and
sender, attempt to decrypt the given bytes via the box algorithm using the sender’s public key and the receiver’s
private key stored in the key-management service.

• ed_25519_x_salsa20_poly1305_encrypt(AgentPubKey, AgentPubKey, XSalsa20Poly1305Data) ->
ExternResult<XSalsa20Poly1305EncryptedData>: Attempt to encrypt a message using the box algo-
rithm, converting the Ed25519 signing keys of the sender and recipient agents into X25519 encryption keys. This
procedure is not recommended29 by the developers of libsodium, the NaCl implementation used by Holochain.

• ed_25519_x_salsa20_poly1305_decrypt(AgentHash, AgentHash, XSalsa20Poly1305EncryptedData) ->
ExternResult<XSalsa20Poly1305Data>: Attempt to decrypt a message using the box algorithm, converting
the Ed25519 signing keys of the recipient and sender agents into X22519 encryption keys. This procedure is not
recommended by the developers of libsodium, the NaCl implementation used by Holochain.

User Notification The HDK SHOULD provide a way for zome code to notify the application user of events. To start
with we have implemented a system where signals can be emitted from a zome:

• emit_signal<I>(I) -> ExternResult<()> where I: Serialize: Emit the bytes as a signal to listening
clients.

27 See https://nacl.cr.yp.to/secretbox.html.
28 See https://nacl.cr.yp.to/box.html.

29 See https://doc.libsodium.org/quickstart#how-can-i-sign-and-en-
crypt-using-the-same-key-pair.

https://nacl.cr.yp.to/secretbox.html
https://nacl.cr.yp.to/box.html
https://doc.libsodium.org/quickstart#how-can-i-sign-and-encrypt-using-the-same-key-pair
https://doc.libsodium.org/quickstart#how-can-i-sign-and-encrypt-using-the-same-key-pair

52

Anchors and Paths A content-addressable store, accessible only by the hashes of stored items, is difficult to search
because of the sparse nature of the hashes. Holochain’s graph DHT makes it much easier to retrieve related information
via the affordance of links that can be retrieved from a given hash address. A powerful pattern that can be built on
top of links is what we call anchors and, more generally, paths. These patterns rely on the idea of starting from a
known hash value that all parties can compute, and placing links from that hash to relevant entries. So, for example,
one could take the hash of the string #funnycats and add links on that hash to all posts in a social media app that
contain that hashtag. This pattern, the anchor pattern, affords the discovery of arbitrary collections or indexes of
content-addressed data. The path pattern simply generalizes this to creating an arbitrary hierarchical tree of known
values off of which to create links in the DHT.

A note about efficiency: Because every attempt to create an entry or link results in another record that needs to be
validated and stored, implementations of this pattern SHOULD attempt to be idempotent when creating anchors or
tags; that is, they should check for the prior existence of the links and entries that would be created before attempting
to create them. It is both semantically and practically appropriate to hash the anchor or path string in-memory and
wrap it in an ExternalHash for link bases and targets, as this avoids the the overhead of creating an entry, and the
hash, which exists only in memory, can truly be said to be external to the DHT.

Anchors The HDK MAY provide functions to compute hashes from, and attach links to, known strings using the
anchor pattern, which creates a two-level hierarchy of anchor types and anchors from which to link entries:

• anchor(ScopedLinkType, String, String) -> ExternResult<EntryHash>: Create an anchor type and/or
anchor, linking from the ‘root’ anchor to the anchor type, and from the type to the anchor (if given). Return the
anchor’s hash.

• list_anchor_type_addresses(ScopedLinkType) -> ExternResult<Vec<AnyLinkableHash>>: Retrieve the
hashes of all anchor types created in the DHT. This permits ad-hoc runtime creation and discovery of anchor
types.

• list_anchor_addresses(LinkType, String) -> ExternResult<Vec<AnyLinkableHash>>: Retrieve the
hashes of all anchors for a given type.

Paths The HDK MAY provide functions to compute hashes from, and attach links to, known strings using the path
pattern, which affords an arbitrary hierarchy of known hashes off of which to link entries:

struct Path(Vec<Component>);

struct Component(Vec<u8>);

struct TypedPath {
link_type: ScopedLinkType,
path: Path,

}

• root_hash() -> ExternResult<AnyLinkableHash>: Compute and return the root hash of the path hierarchy,
from which one can search for any previously registered paths; e.g. path_children(path_root()) will find all
top-level paths. The bytes that make up the root node SHOULD be reasonably unique and well-known in order
to avoid clashes with application data; our implementation uses the bytes [0x00, 0x01].

• Path::path_entry_hash() -> ExternResult<EntryHash>: Return the hash of a given path, which can then
be used to search for items linked from that part of the path tree. Note that, in our implementation, entries are
generated in memory and hashed but not recorded to the DHT.

• TypedPath::ensure() -> ExternResult<()>: Create links for every component of the path, if they do not
already exist. This method SHOULD attempt to be idempotent.

• TypedPath::exists() -> ExternResult<bool>: Look for the existence in the DHT of all the path’s compo-
nents, and return true if all components exist.

• TypedPath::children() -> ExternResult<Vec<Link>>: Retrieve the links to the path’s direct descendants.
Note that these are not links to app-defined data but to nodes in the path hierarchy. App-defined data is
expected to be linked to and retrieved from the path node’s hash via the HDK’s create_link and get_links
functions.

• TypedPath::children_details() -> ExternResult<Vec<LinkDetails>>: Retrieve details about the links to
the path’s direct descendants. This is equivalent to the HDK’s get_link_details function.

53

• TypedPath::children_paths() -> ExternResult<Vec<TypedPath>>: Retrieve the path’s direct descendant
nodes in the hierarchy as TypedPath values.

State Management via Workflows
The previous section describes the functions exposed to, and callable from, DNA code, such that developers can
implement the integrity of a DNA (its structure and validation rules) and the functions that can be called on that
integrity for authoring source chain entries and coherently retrieving that information from the application’s DHT.
This section describes the implementation requirements for recording and storing all aspects of Holochain’s state. This
includes agents’ source-chain entries, the portion of the DHT data a node is holding, configuration data, caches, etc.

Ontology of Workflows
While a properly defined and implemented Holochain system must necessarily be robust enough to handle data from
an incorrectly operating peer, it is nevertheless a more productive experience for everyone if all nodes in a network
change their states according to the same process. There are also cases in which an incorrect implementation may
result in unrecoverable corruption to state.

Hence, we must define an ontology of workflows. A Workflow is defined ontologically as a process which:

1. Accesses and potentially changes Holochain state,
2. Receives an ephemeral input context necessary to do its job,
3. Optionally triggers other workflows to follow up on the newly changed state, potentially including another

iteration of itself, and
4. Optionally returns a value which can be passed to a waiting receiver.

It is important to note that Workflows are reifications of the inherent physics of Holochain; that is, the concept of a
Workflow is demanded by the kinds of state changes a Holochain implementation is expected to make.

The properties which hold for all Workflows are:

• A Workflow MUST operate only on an aspect of local Holochain state, and MUST NOT make assumptions
about the value of any aspects of Holochain state it does not operate on, whether local or remote.

• A Workflow MUST NOT leave the state it operates on in a corrupt condition it fails for any reason, whether the
failure is expected (such as validation failure) or unexpected (such as hardware malfunction). This means that it
MUST either make an atomic and valid state change or make no state change at all.

– Corollary: a Workflow MUST treat the Holochain state upon which it operates as the ultimate source of
truth about itself, which means that any other state it builds up during execution MUST be treated as
incidental and disposable; that is, it MUST able to successfully recover from a failure and correctly change
cryptographic state even if incidental state is lost.

• A Workflow MUST have direct access to the state it is manipulating so that it may observe it immediately before
changing it, to avoid race conditions between Workflows that operate on the same state.

• A Workflow MUST operate on only one aspect of Holochain state, an aspect being defined as a portion of state
which can be changed independently of other aspects.

• A change to Holochain state MUST be expressed monotonically. (This is merely a restatement of the fact that
all changes of Holochain state are by nature monotonic.)

• If a Workflow operates on a contentious aspect of state, it MUST either:
– Be a singleton (that is, only one instance of the Workflow is permitted to run at any time), or
– Be permitted to run concurrently with another instance of itself and:

1. Take a snapshot of the current value of the state when it begins to build a state change to be written,
2. Check the current value of the state immediately before attempting to write a change, and
3. Discard its attempted state change if the value of the state is now different from the snapshot.

We intend to publish an addendum which enumerates the necessary workflows, the aspects of Holochain state upon
which they operate, and the ways in which they operate. In the meantime, the following diagram is a simplified
overview.

54

Shared Data (rrDHT)
In this section we detail some important implementation details of Holochain’s graph DHT.

DHT Operations
Structure of DhtOps You can think of a DHT operation as having this sort of grammar:

BasisHash, OperationType, Payload

Where:

• BasisHash is the address to which an operation is being applied.
• OperationType is the type of operation a node is responsible for performing.
• Payload is the self-proving structure which contains the data needed to perform the operation. In all cases this

includes the Action; it may also include the Entry if such a thing exists for the action type and if it is required
to validate and perform the operation.

The technical implementation below of the human-friendly grammar above compresses and drops unnecessary items
where possible. There are a couple of OperationType where we can drop the entry (but never the action); in these
cases we can reduce all the data down to Action + an OperationType enum struct which usually contains the entry.

The basis hash (or hash neighborhood we’re sending the operation to) can be derived from the payload using the
dht_basis function outlined below.

enum DhtOp {
ChainOp(ChainOp),
WarrantOp(WarrantOp),

}

impl DhtOp {
fn dht_basis(self) -> AnyLinkableHash {
match self {

Self::ChainOp(op) => op.dht_basis(),
Self::WarrantOp(op) => op.dht_basis(),

}

55

}
}

// Ops that start with `Store` store new addressable content at the basis hash.
// Ops starting with `Register` attach metadata to the basis hash.
enum ChainOp {

StoreRecord(Signature, Record, RecordEntry),
StoreEntry(Signature, NewEntryAction, Entry),
RegisterAgentActivity(Signature, Action),
RegisterUpdatedContent(Signature, action::Update, RecordEntry),
RegisterUpdatedRecord(Signature, action::Update, RecordEntry),
RegisterDeletedBy(Signature, action::Delete),
RegisterDeletedEntryAction(Signature, action::Delete),
RegisterAddLink(Signature, action::CreateLink),
RegisterRemoveLink(Signature, action::DeleteLink),

}

impl ChainOp {
fn dht_basis(self) -> AnyLinkableHash {

match self {
StoreRecord(_, action, _) => hash(action),
StoreEntry(_, action, _) => hash(action.entry),
RegisterAgentActivity(_, action) => header.author(),
RegisterUpdatedContent(_, action, _) => action.original_entry_address,
RegisterUpdatedRecord(_, action, _) => action.original_action_address,
RegisterDeletedBy(_, action) => action.deletes_address,
RegisterDeletedEntryAction(_, action) => action.deletes_entry_address,
RegisterAddLink(_, action) => action.base_address,
RegisterRemoveLink(_, action) => action.base_address,

}
}

}

struct WarrantOp(Signed<Warrant>);

struct Warrant {
proof: WarrantProof,
// The author of the warrant.
author: AgentHash,
timestamp: Timestamp,

}

enum WarrantProof {
ChainIntegrity(ChainIntegrityWarrant),

}

impl WarrantProof {
fn dht_basis(self) -> AnyLinkableHash {

self.action_author()
}

fn action_author(self) -> AgentPubKey {
match self {

Self::ChainIntegrity(w) => match w {
ChainIntegrityWarrant::InvalidChainOp { action_author, .. } => action_author,
ChainIntegrityWarrant::ChainFork { chain_author, .. } => chain_author,

},
}

56

}
}

enum ChainIntegrityWarrant {
InvalidChainOp {

action_author: AgentHash,
action: (ActionHash, Signature),
validation_type: ValidationType,

},
ChainFork {

chain_author: AgentHash,
action_pair: ((ActionHash, Signature), (ActionHash, Signature)),

},
}
Uniquely Hashing Dht Operations When items are gossiped/published to us, we SHOULD be able to quickly check:

1. Do we consider ourselves an authority for this basis hash?
2. Have we integrated it yet?

and quickly take appropriate action.

To facilitate this, implementations MUST define a reproducible way of hashing DHT operations. The following code
outlines the minimal necessary contents to create the correct operation hash. The basic procedure for all operations is:

1. Drop all data from the operation except the action.
2. Wrap the action in a variant of a simplified enum representing the minimal data needed to uniquely identify the

operation, thus allowing it to be distinguished from other operations derived from the same action.
3. Serialize and hash the simplified value.

// Parallels each variant in the `ChainOp` enum, only retaining the minimal data
// needed to produce a unique operation hash.
enum ChainOpUniqueForm {

StoreRecord(Action),
StoreEntry(NewEntryAction),
RegisterAgentActivity(Action),
RegisterUpdatedContent(action::Update),
RegisterUpdatedRecord(action::Update),
RegisterDeletedBy(action::Delete),
RegisterDeletedEntryAction(action::Delete),
RegisterAddLink(action::CreateLink),
RegisterRemoveLink(action::DeleteLink),

}

// Conversion implementation for all the types involved in a `DhtOp`.

impl ChainOp {
fn as_unique_form(self) -> ChainOpUniqueForm {

match self {
Self::StoreRecord(_, action, _) => ChainOpUniqueForm::StoreRecord(action),
Self::StoreEntry(_, action, _) => ChainOpUniqueForm::StoreEntry(action),
Self::RegisterAgentActivity(_, action) => {

ChainOpUniqueForm::RegisterAgentActivity(action)
}
Self::RegisterUpdatedContent(_, action, _) => {

ChainOpUniqueForm::RegisterUpdatedContent(action)
}
Self::RegisterUpdatedRecord(_, action, _) => {

ChainOpUniqueForm::RegisterUpdatedRecord(action)
}
Self::RegisterDeletedBy(_, action) => ChainOpUniqueForm::RegisterDeletedBy(action),
Self::RegisterDeletedEntryAction(_, action) => {

57

ChainOpUniqueForm::RegisterDeletedEntryAction(action)
}
Self::RegisterAddLink(_, action) => ChainOpUniqueForm::RegisterAddLink(action),
Self::RegisterRemoveLink(_, action) => ChainOpUniqueForm::RegisterRemoveLink(action),
}

}
}

trait HashableContent {
type HashType: HashType;

fn hash_type(self) -> Self::HashType;

fn hashable_content(self) -> HashableContentBytes;
}

impl HashableContent for DhtOp {
type HashType = hash_type::DhtOp;

fn hash_type(self) -> Self::HashType {
hash_type::DhtOp

}

fn hashable_content(self) -> HashableContentBytes {
match self {

DhtOp::ChainOp(op) => op.hashable_content(),
DhtOp::WarrantOp(op) => op.hashable_content(),

}
}

}

impl HashableContent for ChainOp {
type HashType = hash_type::DhtOp;

fn hash_type(self) -> Self::HashType {
hash_type::DhtOp

}

fn hashable_content(self) -> HashableContentBytes {
HashableContentBytes::Content(

self.as_unique_form().try_into()
)

}
}

impl HashableContent for WarrantOp {
type HashType = hash_type::DhtOp;

fn hash_type(&self) -> Self::HashType {
hash_type::DhtOp

}

fn hashable_content(&self) -> HashableContentBytes {
self.warrant().hashable_content()

}
}

impl HashableContent for Warrant {

58

type HashType = holo_hash::hash_type::Warrant;

fn hash_type(&self) -> Self::HashType {
Self::HashType::new()

}

fn hashable_content(&self) -> HashableContentBytes {
HashableContentBytes::Content(self.try_into())

}
}

Changing States of DHT Content
As a simple accumulation of data (DHT operations) attached to their respective basis addresses, a Holochain DHT
exhibits a logical monotonicity30. The natural consequence of this property is that any two peers who receive the same
set of DHT operations will arrive at the same database state without need of a coordination protocol.

While the monotonic accumulation of operations is the most fundamental truth about the nature of DHT data, it
is nevertheless important for the goal of ensuring Holochain’s fitness for application development that we give the
operations further meaning. This happens at two levels:

• Data and metadata: The immediate result of applying an operation to a basis address is that data or metadata
is now available for querying at that basis address. This takes the form of:

– A record as primary data,
– An entry and its set of creation actions as primary data, presented as the Cartesian product {e}×{h1, . . . , hn},
– Record updates and deletes as metadata,
– Link creations and deletions as metadata,
– Agent activity as a tree of metadata,
– Validation status as metadata, and
– Warrants as metadata.

• CRUD: The total set of metadata on a basis address can always be accessed and interpreted as the application
developer sees fit (see get_details in the DHT Data Retrieval section of this appendix), but certain opinionated
interpretations of that set are useful to provide as defaults31:

– The set difference between all record creates/updates and deletes that refer to them can be accessed as a
“tombstone” set that yields the list of non-deleted records, the liveness of an entry or record, or the earliest
live non-deleted record for an entry (see get in the DHT Data Retrieval section).

– The set difference between all link creates and link deletes that refer to them can be accessed as a tombstone
set that yields the list of non-deleted links (see get_links in the DHT Data Retrieval section).

Validation and Liveness on the DHT The first task before changing the DHT to include a new piece of data is to
validate the operation according to both system-level and application-specific rules. Additionally, an operation MUST
be accompanied by a valid provenance signature that matches the public key of its author.

DHT operations whose validation process has been abandoned are not gossiped. There are two reasons to abandon
validation. Both have to do with consuming too much resources.

1. It has stayed in our validation queue too long without being able to resolve dependencies.
2. The app validation code used more resources (CPU, memory, bandwidth) than we allocate for validation. This

lets us address the halting problem of validation with infinite loops.

30 Keeping CALM: When Distributed Consistency is Easy, Joseph
M Hellerstein and Peter Alvaro https://arxiv.org/abs/1901.01930.

31 While this interpretation indicates that the set of metadata can

be validly seen as operations in a simple operation-based conflict-
free replicated data type (CRDT) (see https://crdt.tech), we
have chosen not to use this term in order to avoid overlaying of
preconceptions formed by more capable CRDTs.

https://arxiv.org/abs/1901.01930
https://crdt.tech

59

Pending

Valid

validation
succeeds

Rejected

validation
fails

Abandoned

validation has taken
too many resources

Entry Liveness Status The ‘liveness’ status of an Entry at its DHT basis is changed in the following ways:

Pending

Live

validation
succeeds

Rejected

validation
fails

Abandoned

validation has taken
too many resources

Dead

RegisterDelete
operation(s)
integrated

for all creation actions

Withdrawn

Withdraw
operation(s)
integrated

for all creation actions

Purged

Purge operation
integrated

new StoreEntry
operation
integrated

An Entry is considered Dead when ALL of the valid creation Actions which created it have been marked as deleted by
valid deletion Actions; that is, Live entails a non-empty result of a set difference between the creation Action hashes
and the deletes_address field of the deletion Action hashes stored at the entry’s basis.

Withdrawn and Purged are placeholders for possible future features:

• Withdrawn: The record has been marked by its author as such, usually to correct an error (such as accidental
forking of their chain after an incomplete restoration from a backup). The same set difference rules apply to
Live/Withdrawn as to Live/Dead.

• Purged: The addressable content has been erased from the CAS database, possibly by collective agreement to
drop it – e.g., for things that may be illegal or unacceptable to hold (e.g., child pornography).

60

The process of changing data to these two states is unimplemented.
Action Liveness Status An Action is considered Dead only after a RegisterDeletedBy operation which references
the Action’s has has been integrated at the Action’s basis.
Link Liveness Status A link is considered Dead only after at least one RegisterDeleteLink operation which references
the CreateLink action has been integrated at the link base’s basis.
Agent Status An Agent’s status, which can be retrieved from the Agent ID basis (that is, the Agent’s public key), is
a composite of:

• Liveness of AgentID Entry, according to the above rules defined in Entry Liveness Status
• Validity of every Source Chain action (that is, whether all RegisterAgentActivity operations are valid)
• Linearity of Source Chain (that is, whether there are any branches in the Source chain, also determined during

integration of RegisterAgentActivity operations)
• Presence of valid Warrants received from other authorities via WarrantOp DHT operations

Empty

Valid

Integration of
RegisterAgentActivity(Dna)

succeeds

Invalid

Integration of
RegisterAgentActivity(Dna)

fails

Integration of
RegisterAgentActivity(n)

succeeds

Integration of
RegisterAgentActivity(n)

fails

Integration of
warrant against

agent

Forked

Integration of
RegisterAgentActivity(n)

detects fork

P2P Networking
A robust networking implementation for Holochain involves three layers:

1. The Holochain P2P networking layer, which is designed around the peer-to-peer communication needs of agents
in a DNA and the building of the DNA’s graph DHT,

2. An underlying P2P layer that handles the fact that a Holochain node will be managing communication on behalf
of potentially multiple agents in multiple networks, and will be connecting with other nodes, any of which may
be running non-overlapping sets of DNAs, and

3. A transport-level layer that supplies and interprets transport.
Thus, from a networking perspective, there is the view of a single DNA (which is its own network), in which more than
one local agent may be participating, but there is also the view of an agent belonging to many DNAs at the same time.
Because the same DHT patterns that work at the level of a Holochain DNA sharing storage of application data
also work to solve the problem of a shared database holding updates to a routing table of peer addresses, we have
implemented a generalized P2P DHT solution and built the higher-level Holochain P2P networking needs on top of
that lower level. Below we describe the high-level requirements and network messages for Holochain, followed by the
lower-level requirements and network messages that carry the higher-level ones.

High-Level Networking (Holochain P2P)
There is a number of network messages that are sent and handled as a direct result of HDK functions or callbacks being
executed in a zome call. These calls are all directed at specific agents in a DNA, either because they are explicitly
targeted in the call (e.g., CallRemote) or because the agent has been determined to be responsible for holding data

61

on the DHT. And in most cases, these message types expect a response. Hence, all Holochain message types are
implemented as the lower-level Call and CallResp message pairs, with the exception of ValidationReceipts and
CountersigningSessionNegotiation, which are implemented as lower-level Broadcast messages.
Note that the ValidationReceipts message is sent back to an authoring agent as a result of a node validating a
DhtOp, and Publish messages are sent by an author node as a result of committing any chain action and transforming
it into DhtOps.
The following messages types MUST be implemented. In our implementation, they are all defined as variants of a
WireMessage enum which are wrapped in lower-level Kitsune messages before being serialized and sent via the network
transport implementation. The message payloads are defined as unnamed structs which comprise the data portion of
the enum variants.

• CallRemote: Call a zome function in a remote cell in the same DHT network, supplying a valid capability secret
if required.

– Notes: On the remote side, implementations MUST enforce permissions:
∗ They MUST check all the active capability grants for the function being called against the capability

claim being exercised.
∗ They MUST check the nonce and expires_at field in order to detect replay attacks and MUST reject

the call if the nonce has been seen for the same agent and/or the expires_at timestamp has passed.
∗ They MUST also check that the signature is valid for the supplied from_agent public key and the call

data.
On the sending side, implementations MUST generate a nonce that is sufficiently unguessable, and an expiry
time that is sufficiently short, to effectively thwart replay attacks while also avoiding spurious timeout
failures.
As a performance optimization, implementations MUST also implement a CallRemoteMulti message type
which provide a workflow to send the same CallRemote message to multiple remote cells in parallel. This
message type differs in these ways:

∗ The signature field is removed.
∗ The to_agent field is replaced with a to_agents: Vec<(Signature, AgentPubKey)>, wherein each

signature is valid for a serialized ZomeCallUnsigned struct with the given AgentPubKe in the to_agent
field.

Implementations MUST respond with the function call’s return value, if the function call was allowed and
successful, or an error.
Implementations SHOULD terminate function execution on the remote node if it has exhausted an execution
cost limit, to prevent denial-of-service attacks against the receiver.

– Payload: The payload is defined as:
{

zome_name: ZomeName,
fn_name: FunctionName,
from_agent: AgentPubKey,
signature: Signature,
to_agent: AgentPubKey,
cap_secret: Option<CapSecret>,
data: Vec<u8>,
nonce: [u8; 32],
expires_at: Timestamp,

}

The zome function payload is serialized into a Vec<u8> in the data field. The signature is generated by
copying the above fields into the following struct, serializing it, and signing the hash of the serialized
bytes.publish
struct ZomeCallUnsigned {

provenance: AgentPubKey,
cell_id: CellId,
zome_name: ZomeName,

62

fn_name: FunctionName,
cap_secret: Option<CapSecret>,
payload: ExternIO,
nonce: Nonce256Bits,
expires_at: Timestamp,

}

– Response: The expected response is a ZomeCallResponse, which is defined above in the HDK section.
• ValidationReceipts: Send validation receipts to the node that authored the DHT operations to which the

receipts apply, as a result of integrating published operations. publish
– Payload: The payload is defined as:

ValidationReceipts {
receipts: Vec<SignedValidationReceipt>,

}

A receipt is defined as:
struct SignedValidationReceipt {

receipt: ValidationReceipt,
// Because multiple agents on the remote node
// may claim authority for the same DHT basis hash,
// this field MUST be plural.
validators_signatures: Vec<Signature>,

}

struct ValidationReceipt {
// The hash of the DHT operation to which this receipt applies.
dht_op_hash: DhtOpHash,
// The result of validating the operation.
validation_status: ValidationStatus,publish
// The remote agents who have validated the operation.
// As with `validators_signatures` above,
// this field MUST be plural.
validators: Vec<AgentPubKey>,
// The time when the operation was integrated.
when_integrated: Timestamp,

}

• Get: Request addressable content and/or metadata stored at the basis hash.
– Notes: At the receiver side, implementations MUST return only integrated data unless pending data has

been requested.
– Payload: The payload is defined as:

{
dht_hash: AnyDhtHash,
options: GetOptions,

}

struct GetOptions {
request_type: GetRequest,

}

enum GetRequest {
// Get integrated content and metadata.
All,
// Get only addressable content.
Content,
// Get only metadata.
Metadata,

63

// Get content even if it hasn't been integrated.
Pending,

}

– Response: The expected response is defined as:

enum WireOps {
Entry(WireEntryOps),
Record(WireRecordOps),
// A warrant in place of data in the case that the data is invalid.
Warrant(WarrantOp),

}

struct WireEntryOps {
// Any actions that created this entry.
creates: Vec<Judged<WireNewEntryAction>>,
// Any deletes that deleted this entry's creation actions.
deletes: Vec<Judged<WireDelete>>,
// Any updates on this entry's creation actions pointing to new
// entries. This is different from updates that created this entry
// listed in the `creates` field.
updates: Vec<Judged<WireUpdateRelationship>>,
// The entry data shared across all actions.
entry: Option<EntryData>,

}

// Data with an optional validation status.
struct Judged<T> {

// The data that the status applies to.
data: T,
// The validation status of the data.
status: Option<ValidationStatus>,

}

enum WireNewEntryAction {
Create(WireCreate),
Update(WireUpdate),

}

// The following are compact representations of similarly named Action
// structs. They do not need the entry type and hash, as these can be
// derived from `WireEntryOps::entry`.
struct WireCreate {

timestamp: Timestamp,
author: AgentPubKey,
action_seq: u32,
prev_action: ActionHash,
signature: Signature,
weight: EntryRateWeight,

}

struct WireUpdate {
timestamp: Timestamp,
author: AgentPubKey,
action_seq: u32,
prev_action: ActionHash,
original_entry_address: EntryHash,
original_action_address: ActionHash,
signature: Signature,

64

weight: EntryRateWeight,
}

struct WireDelete {
delete: Delete,
signature: Signature,

}

struct WireUpdateRelationship {
timestamp: holochain_zome_types::timestamp::Timestamp,
author: AgentPubKey,
action_seq: u32,
prev_action: ActionHash,
original_action_address: ActionHash,
new_entry_address: EntryHash,
new_entry_type: EntryType,
signature: Signature,
weight: EntryRateWeight,

}

// Entry data shared across all CRUD actions.
struct EntryData {

entry: Entry,
entry_type: EntryType,

}

struct WireRecordOps {
// The action this request was for.
action: Option<Judged<SignedAction>>,
// Any deletes on the action.
deletes: Vec<Judged<WireDelete>>,
// Any updates on the action.
updates: Vec<Judged<WireUpdateRelationship>>,
// The entry if there is one.
entry: Option<Entry>,

}

• GetMeta: Request all metadata stored at the given basis hash.

– Payload: The payload is defined as:

{
dht_hash: AnyDhtHash,

}

– Response: The response is defined as:

struct MetadataSet {
// Actions that created or updated an entry. These are the actions
// that show the entry exists.
actions: BTreeSet<TimedActionHash>,
invalid_actions: BTreeSet<TimedActionHash>,
deletes: BTreeSet<TimedActionHash>,
updates: BTreeSet<TimedActionHash>,
// The status of an entry from an authority. This is simply a faster
// way of determining if there are any live actions on an entry.
// If the basis hash is not for an entry, this will be empty.
entry_dht_status: Option<EntryDhtStatus>,

}

• GetLinks: Request link creation and deletion actions stored at the basis hash, optionally filtered by a query

65

predicate.

– Payload: The payload is defined as:

{
query: WireLinkQuery,

}

struct WireLinkQuery {
base: AnyLinkableHash,
link_type: LinkTypeFilter,
tag_prefix: Option<LinkTag>,
before: Option<Timestamp>,
after: Option<Timestamp>,
author: Option<AgentPubKey>,

}

enum LinkTypeFilter {
Types(Vec<(ZomeIndex, Vec<LinkType>)>),
Dependencies(Vec<ZomeIndex>),

}

– Response: The response is defined as:

struct WireLinkOps {
// Link creation actions that match the query.
creates: Vec<WireCreateLink>,
// Link deletion actions that match the query.
deletes: Vec<WireDeleteLink>,

}

• CountLinks: Request only the count of live link creation actions, optionally filtered by the query predicate.

– Payload: The payload is defined as:

{
query: WireLinkQuery,

}

– Response: The response is defined as a Vec<ActionHash>, where the included action hashes are non-
tombstoned link creation actions matching the query.

• GetAgentActivity: Request information about the given agent’s activity, optionally filtered by the given
predicate, which is defined above in the HDK section, and including or excluding data specified by the options,

– Payload: The payload is defined as:

{
agent: AgentPubKey,
query: ChainQueryFilter,
options: GetActivityOptions,

}

struct GetActivityOptions {
// Include the agent activity actions in the response.
include_valid_activity: bool,
// Also include any rejected actions in the response.
include_rejected_activity: bool,
// Include warrants in the response.
include_warrants: bool,
// Include the full signed actions and hashes in the response
// instead of just the hashes.
include_full_actions: bool,

}

66

– Response: The response is defined as AgentActivityResponse<ActionHash>, where
AgentActivityResponse<T> is defined as:

struct AgentActivityResponse<T = SignedActionHashed> {
agent: AgentPubKey,
valid_activity: ChainItems<T>,
rejected_activity: ChainItems<T>,
status: ChainStatus,
highest_observed: Option<HighestObserved>,
warrants: Vec<Warrant>,

}

enum ChainItems<T = SignedActionHashed> {
Full(Vec<T>),
Hashes(Vec<(u32, ActionHash)>),
// In the case that the value of `GetActivityOptions` specified that
// the given type of agent activity was not wanted.
NotRequested,

}

struct HighestObserved {
// The highest sequence number observed.
action_seq: u32,
// Hash(es) of any action(s) claiming to be at this action sequence.
// Any vector with a cardinality > 1 indicates a forked chain, which
// will be corroborated by the information contained in
// `AgentActivityResponse<T>::status` and
// `AgentActivityResponse<T>::warrants`.
hash: Vec<ActionHash>,

}

• MustGetAgentActivity: Request a contiguous sequence of agent activity actions for the given agent, bounded
by the specified ChainFilter, which is defined above in the HDK section.

– Payload: The payload is defined as:

{
agent: AgentPubKey,
filter: ChainFilter,

}

– Response: The response is defined as:

enum MustGetAgentActivityResponse {
// The activity was found.
Activity {

// The actions performed by the agent.
activity: Vec<RegisterAgentActivity>,
// Any warrants issued to the agent for this activity.
warrants: Vec<WarrantOp>,

},
// The requested chain range was incomplete.
IncompleteChain,
// The requested chain top was not found in the chain.
ChainTopNotFound(ActionHash),
// The filter produces an empty range.
EmptyRange,

}

• CountersigningSessionNegotiation: Negotiate a step in the countersigning process.

– Payload: The payload is defined as:

67

CountersigningSessionNegotiation {
message: CountersigningSessionNegotiationMessage,

}

enum CountersigningSessionNegotiationMessage {
// Sent by a `StoreEntry` authority or enzyme after they have
// collected signed actions from all counterparties; the author (the
// receiver of the message) may now safely proceed to commit their
// own countersigning entry creation action.
AuthorityResponse(Vec<SignedAction>),
// Sent by a counterparty to the designated enzyme when they have
// determined that the countersigned entry creation action is valid
// from the perspective of all counterparties and they intend to
// commit their own entry creation action once they have received
// all signatures from the enzyme. The `DhtOp` payload is a
// `StoreEntry`.
EnzymePush(DhtOp),

}

• PublishCountersign: Publish a countersigned DHT operation to a DHT authority. This happens in two steps:

1. When a counterparty has received preflight acceptances from all participating counterpar-
ties, and the countersigning session is not being managed by an enzyme, they proceed to
register their intent to commit the countersigned entry creation action by publishing the
StoreEntry operation with the is_action_author flag set to true. In this scenario, the au-
thority is acting as a reliable witness to all counterparties’ signatures and MUST send a
CountersigningSessionNegotiation(CountersigningSessionNegotiationMessage::AuthorityResponse)
message to all counterparties if, from their perspective, all operations have been received within the session
time window.

2. When a counterparty has received all signed actions from all other participating counterparties, they
publish a RegisterAgentActivity operation for each of their counterparties’ signed actions with the
is_action_author flag set to false. Note that the DHT operation is signed by the counterparty sending
the message, while the enclosed action is signed by the counterparty that authored the action. Also note
that this MUST also be accompanied by regular Publish messages for the DHT operations produced from
this counterparty’s entry creation action.

– Notes: On the receiver side, this is handled as an incoming publish message.

– Payload: The payload is defined as:

{
is_action_author: bool,
op: DhtOp,

}

Low-Level Networking (Kitsune P2P)
Kitsune is a P2P library for implementing distributed application messaging needs that delivers dynamic peer address
discovery and message routing. It also delivers the necessary affordances for distributed applications to implement
sharded DHTs as a content-addressable store, as it groups its messages into KitsuneSpaces (which correspond to
Holochain’s DNA addresses) and KitsuneAgents which are, as in Holochain, the public keys of the agents participating
in the space. Kitsune handles the mapping of the KitsuneAgent address space to network transport addresses.

Kitsune assumes an “implementor” that defines its own higher-level custom message types, and manages persistent
storage, and handles key management and message signing. Kitsune sends events to the implementor to retrieve data,
and receives messages from the implementor to be delivered to other Kitsune nodes.

Thus, Holochain implements both its node-to-node messaging and its graph DHT on top of the capabilities provided
by Kitsune.
Message Classes and Types Kitsune has two message classes:

• Notify: Optimistically send a message without listening for a response.
• Request: Send a message with a nonce, and expect a response with a matching nonce.

68

Messages of both of these classes are sent asynchronously; Request is simply a pattern of pairing two messages by
means of a nonce.

These are the message types that MUST be implemented. They are all defined as variants of a Wire enum, which are
serialized and sent via the network transport layer.

• Failure: Notify a peer of failure, as a response to a received message that couldn’t be handled.

– Payload: THe payload is defined as:

{
reason: String,

}

• Call: Make a remote procedure call (RPC) to a remote peer.

– Payload: The payload is defined as:

Call {
space: KitsuneSpace,
to_agent: KitsuneAgent,
data: Vec<u8>,

}

struct KitsuneSpace(Vec<u8>);

struct KitsuneAgent(Vec<u8>);

The space and to_agent arguments map at the Holochain layer to DNA hash and agent public key. The
data argument holds the input that will be passed to the remote function.

• CallResp: Respond to a Call message with the output of the called function.

– Payload: The payload is defined as a Vec<u8>.

• Broadcast: Broadcast a message using Notify.

– Payload: The payload is defined as:

{
space: KitsuneSpace,
to_agent: KitsuneAgent,
data: BroadcastData,

}

enum BroadcastData {
// Broadcast arbitrary data.
User(Vec<u8>),
// Broadcast one's own agent info.
AgentInfo(AgentInfoSigned),
// Announce that one or more DHT operations have been published for
// which the receiver is believed to be an authority; it is expected
// that they will follow up by sending `FetchOp` messages to request
// the operations. Because the remote node may claim authority for a
// range of basis hashes, multiple operations MUST be permitted to
// be announced in one message.
Publish {

source: KitsuneAgent,
op_hash_list: Vec<RoughSized<KitsuneOpHash>>,
context: FetchContext,

},
}

struct AgentInfoSigned {
space: KitsuneSpace,

69

agent: KitsuneAgent,
storage_arq: Arq,
url_list: Vec<url2::Url2>,
signed_at_ms: u64,
expires_at_ms: u64,
signature: KitsuneSignature,
encoded_bytes: [u8],

}

// Description of a network location arc over which an agent claims
// authority.
struct Arq {

start: DhtLocation,
// The size of chunks for this arc, as 2ˆpower * 4096.
power: u8,
// The number of chunks in this arc. Hence, the arc size in terms of
// network location space is power * count.
count: u32,

}

// Network locations wrap at the bounds of u32.
struct DhtLocation(Wrapping<u32>);

// Represents a public key signature.
struct KitsuneSignature(Vec<u8>);

// Convey the rough size of the data behind a hash.
struct RoughSized<T> {

// The hash of the data to be rough-sized.
data: T,
// The approximate size of the data.
size: Option<RoughInt>,

}

// Positive numbers are an exact size; negative numbers represent a size
// of roughly -x * 4096.
struct RoughInt(i16);

// Represents a DHT operation hash.
struct KitsuneOpHash(Vec<u8>);

// Arbitrary context identifier.
struct FetchContext(u32);

• DelegateBroadcast: Broadcast a message to peers covering a basis hash, requesting receivers broadcast to peers
in the same neighborhood.

– Payload: The payload is defined as:

{
space: KitsuneSpace,
// The DHT basis hash to target.
basis: KitsuneBasis,
to_agent: KitsuneAgent,
mod_idx: u32,
mod_cnt: u32,
data: BroadcastData,

}

struct KitsuneBasis(Vec<u8>);

70

The mod_cnt and mod_idx fields fields define the scope of the broadcast. Receivers MUST modulo the
network locations of candidate authorities in their own peer tables by mod_cnt, only re-broadcasting to a
peer if the modulo matches mod_idx. This avoids two nodes sending the same broadcast message to the
same peer.
The data argument is the data to be passed on to the neighborhood, and is defined above under Broadcast.

• Gossip: Negotiate gossiping of DHT operations, with an opaque data block to be interpreted by a gossip
implementation.

– Notes: Kitsune handles gossip per Space (which maps to a DNA at the higher Holochain layer) rather
than a cell. This message uses the Notify strategy.

– Payload: The payload is defined as:
{

space: KitsuneSpace,
data: Vec<u8>,
module: GossipModuleType,

}

// Currently implemented gossip strategies.
enum GossipModuleType {

// Recent gossip deals with DHT data with a recent timestamp.
ShardedRecent,
// Historical gossip deals with data whose timestamp is older than
// the recent gossip threshold.
ShardedHistorical,

}

The structure of the messages that appear in the data argument are documented in the following section
on Gossip.

• PeerGet: Ask a remote node if they know about a specific agent.
– Payload: The payload is defined as:

{
space: KitsuneSpace,
agent: KitsuneAgent,

}

• PeerGetResp: Respond to a PeerGet with information about the requested agent.
– Payload: The payload is defined as:

{
agent_info_signed: AgentInfoSigned,

}

• PeerQuery:Query a remote node for peers holding or nearest to holding a u32 network location.
– Payload: The payload is defined as:

{
space: KitsuneSpace,
basis_loc: DhtLocation,

}

• PeerQueryResp: Respond to a PeerQuery.
– Payload: The payload is defined as:

{
peer_list: Vec<AgentInfoSigned>,

}

• PeerUnsolicited: Send peer information without being asked to. Notably, a node may want to send their own
peer info to prevent being inadvertently blocked.

71

– Payload: The payload is defined as:

{
peer_list: Vec<AgentInfoSigned>,

}

• FetchOp: Request DHT operation data which a node claims to hold.

– Notes: This and its response PushOpData transfer the actual data which is validated and integrated at
basis hashes for which a node is an authority. As an optimization, a node can request data for multiple
Spaces which they believe the remote node has in common with them. The FetchKey type is defined as:

– Payload: The payload is defined as:

{
fetch_list: Vec<(KitsuneSpace, Vec<FetchKey>)>,

}

enum FetchKey {
Op(KitsuneOpHash),

}

• PushOpData: Send requested DHT operation data in response to FetchOp.

– Payload: The payload is defined as:

{
op_data_list: Vec<(KitsuneSpace, Vec<PushOpItem>)>,

}

struct PushOpItem {
op_data: Vec<u8>,
region: Option<(RegionCoords, bool)>,

}

struct RegionCoords {
space: Segment,
time: Segment,

}

struct Segment {
power: u8,
offset: u32,

}

• MetricExchange: Exchange availability information about one or more peers.

– Notes: Implementations SHOULD use this data to rebalance the arc of DHT basis hashes for which they
claim authority, in order to ensure adequate availability for all basis hashes.

– Payload: The payload is defined as:

{
space: KitsuneSpace,
msgs: Vec<MetricExchangeMsg>,

}

enum MetricExchangeMsg {
V1UniBlast {

extrap_cov_f32_le: Vec<u8>,
},
UnknownMessage,

}

72

Gossip Kitsune MUST provide a way for the DHT data to be gossiped among peers in a space. We assume that
there will be many gossip implementations that are added over time.

Any gossip algorithm to be used in the Holochain context MUST be able to handle the following constraints:

1. A new node coming on to the network, or one returning to the network after a significant changes have occurred
on the DHT, SHOULD be able to quickly but incrementally synchronize to a state of holding the correct data
that it is deemed to be an authority for, while balancing bandwidth limitations of the network it is part of. This
requires that the system be resilient to asymmetric upload and download speeds that will vary across peers, and
indicates that nodes that believe they are out of sync with their peers release their authority, and incrementally
and conservatively increase it.

2. Gossiping SHOULD minimize total consumed resources; e.g., by re-transmitting as little data as possible,
dynamically adjusting gossip round frequency to levels of activity in the network, or backing off gossip when a
peer exhibits backpressure.

3. Gossip SHOULD prioritize the synchronization of data that is more likely to be in demand; for many common
application scenarios, this means that more recently published data should be synchronized sooner and more
frequently.

4. Gossip SHOULD dynamically adapt to changing realities of authority coverage for all basis hashes by commu-
nicating individual peer coverage regularly, allowing nodes with sufficient excess capacity to assume greater
coverage to compensate for regions with poor coverage, either because peers go offline or their excess capacity is
limited.

We have developed a hybrid gossip implementation that separates DHT operations into “recent” and “historical”, with
recent gossip using a Bloom filter and historical gossip using a novel “quantized gossip” algorithm that efficiently
shards and redistributes data as nodes come and go on the network. While the full description of that implementation
is beyond the scope of this document, we will document the messages that nodes pass:

• Initiate: Propose a gossip round, specifying one or more arcs of the location space for which the initiator is an
authority.

– Notes: A gossip round MAY cover more than one agent within a given Space on the initiator’s device.

– Payload: The payload is defined as:

{
intervals: Vec<Arq>,
// Disambiguates gossip rounds initiated in parallel.
id: u32,
agent_list: Vec<AgentInfoSigned>,

}

• Accept: Respond to an Initiate, specifying the arcs for which the agents in the acceptor’s conductor are
authorities.

– Notes: The gossip round, as it goes forward, will concern network locations that are the set intersection of
all the network locations covered by all the arcs of both the initiator and the acceptor.

– Payload: The payload is defined as:

{
intervals: Vec<Arq>,
agent_list: Vec<AgentInfoSigned>,

}

• Agents: Send a Bloom filter of the public keys of all the agents for which a peer is storing AgentInfo data.

– Notes: The recipient is expected to compare this value against the Bloom filter value for their own held
AgentInfo data, and respond with a MissingAgents message. As this uses a Bloom filter, peers may
require a few rounds of exchanges before they converge on identical values and are finished synchronizing
AgentInfo data. Implementations SHOULD retry on a loop until this condition is satisfied.

– Payload: The payload is defined as:

{
filter: Option<(usize, Vec<u8>)>,

}

73

• MissingAgents: Respond to Agents, supplying the AgentInfos for all the agents that did not appear to be
included in the Bloom filter.

– Payload: The payload is defined as:
{

agents: Vec<AgentInfoSigned>,
}

• OpBloom: Send a Bloom filter of the hashes of all the recent DHT operations which a peer is holding.
– Notes: As with Agents, the recipient compares this value with their own held recent DHT operations

and responds with a MissingOpHashes message, and the exchange SHOULD be repeated until peers are
synchronized.

– Payload: The payload is defined as:
{

// The Bloom filter value.
missing_hashes: EncodedTimedBloomFilter,
// Is this the last Bloom message to be sent?
finished: 1,

}

enum EncodedTimedBloomFilter {
// I have no overlap with your agents; please don't send any ops.
NoOverlap,
// I have overlap and I have no hashes; please send all your ops.
MissingAllHashes {

// The time window that we are missing hashes for.
time_window: Range<Timestamp>,

},
// I have overlap and I have some hashes; please send any missing
// ops.
HaveHashes {

// The encoded Bloom filter.
filter: Vec<u8>,
// The time window these hashes are for.
time_window: Range<Timestamp>,

},
}

• OpRegions: Send a map of quantized region coordinates to XOR fingerprints of the set of DHT operations the
sender is holding for that region.

– Notes: Its purpose is to quickly communicate information about the infrequently changing set of historical
DHT operations which the sender holds for comparison and synchronization. The recipient is expected to
send the DHT operation hashes for all mismatched regions via MissingOpHashes.

– Payload: The payload is defined as:
{

region_set: RegionSetLtcs
}

struct RegionSetLtcs {
// The generator for the coordinates.
coords: RegionCoordSetLtcs,
// The outermost vec corresponds to arqs in the `ArqSet`; the
// middle vecs correspond to the spatial segments per arq; the
// innermost vecs are the time segments per arq.
data: Vec<Vec<Vec<RegionData>>>,

}

74

struct RegionCoordSetLtcs {
times: TelescopingTimes,
arq_set: ArqSet,

}

struct TelescopingTimes {
time: TimeQuantum,
// MUST be equal to or more recent than the DNA's `origin_time`
// property.
limit: Option<u32>,

}

struct TimeQuantum(u32);

struct RegionData {
// The XOR of the hashes of all operations found in this region.
hash: Hash32,
// The total size of operation data contained in this region.
size: u32,
// The number of operations in this region.
count: u32,

}

• MissingOpHashes: Respond to an OpBloom or OpRegions message with a list of DHT operation hashes which
don’t match the sender’s Bloom filter.

– Notes: If the list is large, it can be chunked into multiple messages, and the finished property in each
message indicates whether more chunks will be sent. (Implementations SHOULD automatically send the
next chunk without being asked to.) After this, the recipient of this message is expected to retrieve DHT
operation data from the sender, not via gossip but via the FetchOp notify message.

– Payload: The payload is defined as:

{
ops: Vec<HashSized>,
finished: bool;

}

• Error { message: String, }, Busy, NoAgents, AlreadyInProgress: Sent by the receiver of a gossip message
if they’re unable to satisfy the sender’s request for the specified reason.

The Conductor
A Holochain Conductor manages running Holochain applications, which consist of logically related DNAs operating
under a single agency. Thus a conductor MUST be able to interpret an application bundle format and instantiate
Cells from that format. The bundle format SHOULD store its manifests in a readable format such as YAML, and
SHOULD be capable of storing arbitrary resources as streams of bytes. Additionally a Conductor SHOULD cache
DNA definitions and WASMs provided (along with WASM instructions compiled to machine instructions, if supported
by the architecture) so as to decrease installation time of other instances of the same DNA and not store multiple
copies of the same DNA.

Bundle Formats
Holochain implementations must be able to load Holochain applications that have been serialized, either to disk or
for transmission over a network. Holochain uses a bundling format that allows for specification of properties along
with other resources in a manifest that can include recursively bundled elements of the same general bundling format
but adapted for different component types. The bundling format can also store the resources themselves within the
same file; any of the sub-bundles can be specified by “location”, which may be specified to be in the same bundle, in a
separate file, or at a network address. Thus we have Zomes, DNAs, Apps, UIs, and WebApps that can all be wrapped

75

up in a single bundle, or can reference components stored elsewhere.32 The manifests for each of the type of bundles
that MUST be implemented are specified as follows:
DNA Bundle Manifest A DNA bundle manifest specifies the components that are critical to the operation of the
DNA and affect its hash (the IntegrityManifest property) as well as the components that are supplied to facilitate
the operation of a cell (the CoordinatorManifest property).
struct DnaManifestV1 {

// A user-facing label for the DNA.
name: String,
integrity: IntegrityManifest,
coordinator: CoordinatorManifest,
// A list of ancestors of this DNA, used for satisfying dependencies on
// prior versions of this DNA. The application's Coordinator interface is
// expected to be compatible across the list of ancestors.
lineage: Vec<DnaHashB64>,

}

struct IntegrityManifest {
// A network seed for uniquifying this DNA.
network_seed: Option<Vec<u8>>,

// Any arbitrary application properties can be included in this object.
// They may be accessed by DNA code to affect runtime behavior.
properties: Option<YamlProperties>,

// The time used to denote the origin of the network, used to calculate time
// windows during gossip. All Action timestamps must come after this time.
origin_time: HumanTimestamp,

// An array of integrity zome manifests associated with the DNA. The order
// is significant: it determines initialization order and affects the DNA
// hash.
zomes: Vec<ZomeManifest>,

}

struct CoordinatorManifest {
// Coordinator zomes to install with this DNA.
zomes: Vec<ZomeManifest>,

}

struct ZomeManifest {
// A user-facing label for the zome.
name: ZomeName,

// The hash of the WebAssembly bytecode which defines this zome.
hash: Option<WasmHashB64>,

// The location of the wasm for this zome.
location: Location,

// The integrity zomes this zome depends on. The order of these MUST match
// the order the types are used in the zome.
dependencies: Option<Vec<ZomeName>>,

}

32 The “meta bundle” format can be seen here:
https://github.com/holochain/holochain/tree/develop/crates/mr_-

bundle.

https://github.com/holochain/holochain/tree/develop/crates/mr_bundle
https://github.com/holochain/holochain/tree/develop/crates/mr_bundle

76

enum Location {
Bundled(PathBuf),

// Get the file from the local filesystem (not bundled).
Path(PathBuf),

// Get the file from a URL.
Url(String),

}
App Bundle Manifest An AppBundle combines together a set of DNAs paired with “Role” identifiers and instructions
for how/when the Conductor should instantiate DNAs to make cells in the bundle. The “role” of DNA is useful for
application developers to be able to specify a DNA by a semantically accessible name rather than just its hash. This
also allows for “late-binding” as DNAs may be used in different ways in applications, and thus we can think of the
DNA’s name by the role it plays in a given application.

There is a number of ways that application developers MUST be able to specify conditions under which DNAs are
instantiated into Cells in the Conductor:

• The basic use case is simply that a DNA is expected to be instantiated as a Cell. There MUST be an option to
defer instantiation of the installed DNA until a later time, thus implementing a “lazy loading” strategy.

• There is a number of use cases where a Holochain application will also expect a Cell of a given DNA to already
have instantiated and relies on this behavior, and fail otherwise. Thus, there MUST be a provisioning option to
specify this use case. There also SHOULD be a way of signalling to the conductor that the dependency SHOULD
NOT be disabled or uninstalled until the dependent app is uninstalled.

• Holochain Conductors MUST also implement a “cloning” mechanism to allow applications to dynamically create
new Cells from an existing DNA via the App interface (see Conductor API below). Cloned cells are intended to
be used for such use cases as adding private workspaces to apps where only a specific set of agents are allowed to
join the DHT of that DNA, such as private channels; or for creating DHTs that have temporary life-spans in
app, like logs that get rotated. DNAs that are expected to be cloned MUST be specified as such in the DNA
Bundle so that the Conductor can have cached and readied the WASM code for that DNA.

• Finally, Conductors MUST provide a way for an App to be installed without supplying membrane proofs and
instantiating Cells, in cases where membrane proof values are dependent on the agent’s public key which is
generated at application installation time. This MUST be accompanied by a method of supplying those membrane
proofs when they become available. (Note that this method of deferred instantiation is distinct from the deferred
option for the preceding strategies in two ways: first, its purpose is to enable an instantiation process which
requires information that isn’t available until after installation rather than to enable lazy loading, and second,
the Cells are instantiated but not active.)

struct AppManifestV1 {
// User-facing name of the App. This may be used as the `installed_app_id`
// in the Admin API.
name: String,

// User-facing description of the app.
description: Option<String>,

// The roles that need to be filled (by DNAs) for this app.
roles: Vec<AppRoleManifest>,

// If true, the app should be installed without needing to specify membrane
// proofs. The app's cells will be in an incompletely instantiated state
// until membrane proofs are supplied for each.
membrane_proofs_deferred: bool,

}

struct AppRoleManifest {
// The ID which will be used to refer to:
// * this role,
// * the DNA which fills it,
// * and the cell(s) created from that DNA

77

name: RoleName,

// Determines if, how, and when a Cell will be provisioned.
provisioning: Option<CellProvisioning>,

// The location of the DNA bundle resource, and options to modify it before
// instantiating in a Cell.
dna: AppRoleDnaManifest,

}

type RoleName = String;

enum CellProvisioning {
// Always create a new Cell when installing this App.
Create { deferred: bool },

// Require that a Cell be already installed which matches the DNA
// `installed_hash` spec, and which has an Agent that's associated with
// this App's agent via DPKI. If no such Cell exists, *app installation MUST
// fail*. The `protected` flag indicates that the Conductor SHOULD NOT allow
// the dependency to be disabled or uninstalled until all cells using this
// DNA are uninstalled.
UseExisting { protected: bool },

// Install or locate the DNA, but do not instantiate a Cell for it. Clones
// may be instantiated later. This requires that `clone_limit` > 0.
CloneOnly,

}

struct AppRoleDnaManifest {
// Where to find this DNA.
location: Option<Location>,

// Optional default modifier values, which override those found in the DNA
// manifest and may be overridden during installation.
modifiers: DnaModifiersOpt<YamlProperties>,

// The expected hash of the DNA's integrity manifest. If specified,
// installation MUST fail if the hash does not match this. Also allows this
// DNA to be targeted as a dependency in `AppRoleManifest`s that specify
// `UseExisting` or `CreateIfNotExists` provisioning strategies.
installed_hash: Option<DnaHashB64>,

// Allow up to this many "clones" to be created at runtime.
clone_limit: u32,

}
WebApp Bundle A WebAppBundle combines together a specific user interface together with an AppBundle as follows:

struct WebAppManifestV1 {
// Name of the App. This may be used as the `installed_app_id`.
name: String,

// Web UI used for this app, packaged in a .zip file.
ui: Location,

// The AppBundle location.
happ_manifest: Location,

}

78

API
A Holochain Conductor MUST provide access for user action through an Admin API to manage Apps and DNAs
(install/uninstall, enable/disable, etc) and through an App API to make zome calls to specific DNAs in specific Apps,
create cloned DNAs, supply deferred membrane proofs, and introspect the App. In our implementation, these API
is defined as a library so that these calls can be made in-process, but they are also implemented over a WebSocket
interface so they can be called by external processes.

In the WebSocket implementation of this API, requests and responses are wrapped in an “envelope” format that
contains a nonce to match requests with response, then serialized and sent as WebSocket messages. The request
message types are defined as variants of an AdminRequest or AppRequest enum, as are their corresponding responses
(AdminResponse and AppResponse respectively). Hence, in the API definitions below, the enum name of the function
name or return value type is implied.

Both response enums MUST define an Error(e) variant to communicate error conditions, where e is a variant of the
enum:

enum ExternalApiWireError {
// Any internal error.
InternalError(String),
// The input to the API failed to deserialize.
Deserialization(String),
// The DNA path provided was invalid.
DnaReadError(String),
// There was an error in the ribosome.
RibosomeError(String),
// Error activating app.
ActivateApp(String),
// The zome call is unauthorized.
ZomeCallUnauthorized(String),
// A countersigning session has failed.
CountersigningSessionError(String),

}
Admin API Below is a list of the Admin API functions that MUST be implemented along with any details of
function arguments and return values, as well as any contextual notes on functional constraints or other necessary
implementation details.

For error conditions, the AppResponse::Error(e) variant MUST be used, where e is a variant of the
ExternalApiWireError enum.

• AddAdminInterfaces(Vec<AdminInterfaceConfig>) -> AdminInterfacesAdded: Set up and register one or
more new admin interfaces as specified by a list of configurations.

– Arguments: The AdminInterfaceConfig SHOULD be a generalized data structure to allow creation of
an interface of whatever types are contextually appropriate for the system on which the conductor runs:

struct AdminInterfaceConfig {
driver: InterfaceDriver,

}

enum InterfaceDriver {
Websocket {

port: u16,
// The allowed values of the `Origin` HTTP header.
allowed_origins: AllowedOrigins,

}
}

enum AllowedOrigins {
Any,
Origins(HashSet<String>),

}

79

• RegisterDna(RegisterDnaPayload) -> DnaRegistered(DnaHash) : Install a DNA for later use in an App.
– Notes: This call MUST store the given DNA into the Holochain DNA database. This call exists separately

from InstallApp to support the use case of adding a DNA into a conductor’s DNA database once, such
that the transpilation of WASM to machine code happens only once and gets cached in the conductor’s
WASM store.

– Arguments: A struct of the following type:
struct RegisterDnaPayload {

// Override the DNA modifiers specified in the app and/or DNA bundle
// manifest(s).
modifiers: DnaModifiersOpt<YamlProperties>,
source: DnaSource,

}

enum DnaSource {
Path(PathBuf),
Bundle(DnaBundle),
// Register the DNA from an existing DNA registered via a prior
// `RegisterDna` call or an `InstallApp` call.
Hash(DnaHash),

}

– Return value: If the DNA cannot be located at the specified path,
AdminResponse::Error(ExternalApiWireError::DnaReadError(s)) MUST be returned, where s
is an error message to be used for troubleshooting.

• GetDnaDefinition(DnaHash) -> DnaDefinitionReturned(DnaHash): Get the definition of a DNA.
– Return Value: This function MUST return all of the data that specifies a DNA as installed as follows:

struct DnaDef {
name: String,
modifiers: DnaModifiers,
integrity_zomes: Vec<ZomeName>,
coordinator_zomes: Vec<ZomeName>,
lineage: HashSet<DnaHash>,

}

• UpdateCoordinators(UpdateCoordinatorsPayload) -> CoordinatorsUpdated: Update coordinator zomes
for an already installed DNA.

– Notes: This call MUST replace any installed coordinator zomes with the same zome name. If the zome
name doesn’t exist then the coordinator zome MUST be appended to the current list of coordinator zomes.

– Arguments: A struct defined as:
struct UpdateCoordinatorsPayload {

dna_hash: DnaHash,
source: CoordinatorSource,

}

enum CoordinatorSource {
// Load coordinators from a bundle file.
Path(PathBuf),
Bundle(Bundle<Vec<ZomeManifest>>),

}

• InstallApp(InstallAppPayload) -> AppInstalled(AppInfo): Install an app using an AppBundle.
– Notes: An app is intended for use by one and only one Agent, and for that reason it takes an AgentPubKey

and instantiates all the DNAs bound to that AgentPubKey as new Cells. The new app should not be enabled
automatically after installation, and instead must explicitly be enabled by calling EnableApp.

– Arguments: InstallAppPayload is defined as:

80

struct InstallAppPayload {
source: AppBundleSource,

// The agent to use when creating Cells for this App.
agent_key: AgentPubKey,

// The unique identifier for an installed app in this conductor.
// If not specified, it will be derived from the app name in the
// bundle manifest.
installed_app_id: Option<String>,

// Optional proof-of-membrane-membership data for any cells that
// require it, keyed by the `RoleName` specified in the app bundle
// manifest.
membrane_proofs: HashMap<RoleName, MembraneProof>,

// Optional: overwrites all network seeds for all DNAs of Cells
// created by this app. This does not affect cells provisioned by
// the `UseExisting` strategy.
network_seed: Option<Vec<u8>>,

// If app installation fails due to genesis failure, normally the
// app will be immediately uninstalled. When this flag is set, the
// app is left installed with empty cells intact. This can be useful
// for using `GraftRecordsOntoSourceChain` or diagnostics.
ignore_genesis_failure: bool,

}

– Return Value: The returned value MUST contain the AppInfo data structure (which is also retrievable
after installation via the GetAppInfo API), and is defined as:

struct AppInfo {
installed_app_id: String,
cell_info: HashMap<RoleName, Vec<CellInfo>>,
status: AppInfoStatus,

}

enum CellInfo {
// Cell provisioned at app installation as defined in the bundle.
Provisioned(ProvisionedCell),
// Cell created at runtime by cloning a DNA.
Cloned(ClonedCell),
// Potential cell with deferred installation as defined in the
// bundle.
Stem(StemCell),

}

struct ProvisionedCell {
cell_id: CellId,
dna_modifiers: DnaModifiers,
name: String,

}

struct StemCell {
// The hash of the DNA that this cell will be instantiated from.
original_dna_hash: DnaHash,
// The DNA modifiers that will be used when instantiating the cell.
dna_modifiers: DnaModifiers,
// An optional name to override the cell's bundle name when

81

// instantiating.
name: Option<String>,

}

enum AppInfoStatus {
// The app is paused due to a recoverable error. There is no way to
// manually pause an app.
Paused { reason: PausedAppReason },
// The app is disabled, and may be restartable depending on the
// reason.
Disabled { reason: DisabledAppReason },
Running,
AwaitingMemproofs,

}

enum PausedAppReason {
Error(String);

}

enum DisabledAppReason {
// The app is freshly installed, and has not been started yet.
NeverStarted,
// The app is fully installed and deferred memproofs have been
// provided by the UI, but the app has not been started yet.
NotStartedAfterProvidingMemproofs,
// The app has been disabled manually by the user via an admin
// interface.
User,
// The app has been disabled due to an unrecoverable error.
Error(String),

}

• UninstallApp { installed_app_id: InstalledAppId } -> AppUninstalled : Uninstall the app specified
by the argument installed_app_id from the conductor.

– Notes: The app MUST be removed from the list of installed apps, and any cells which were referenced only
by this app MUST be disabled and removed, clearing up any persisted data. Cells which are still referenced
by other installed apps MUST NOT be removed.

• ListDnas -> DnasListed(Vec<DnaHash>) : List the hashes of all installed DNAs.
• GenerateAgentPubKey -> AgentPubKeyGenerated(AgentPubKey) : Generate a new Ed25519 key pair.

– Notes: This call MUST cause a new key pair to be added to the key store and return the public part
of that key to the caller. This public key is intended to be used later when installing an App, as a Cell
represents the agency of an agent within the space created by a DNA, and that agency comes from the
power to sign data with a private key.

• ListCellIds -> CellIdsListed<Vec<CellId>>: List all the cell IDs in the conductor.
• ListApps { status_filter: Option<AppStatusFilter> } -> AppsListed(Vec<AppInfo>): List the apps

and their information that are installed in the conductor.
– Notes: If status_filter is Some(_), it MUST return only the apps with the specified status.
– Arguments: The value of status_filter is defined as:

enum AppStatusFilter {
// Filter on apps which are Enabled, which can include both Running
// and Paused apps.
Enabled,
// Filter only on apps which are Disabled.
Disabled,
// Filter on apps which are currently Running (meaning they are also

82

// Enabled).
Running,
// Filter on apps which are Stopped, i.e. not Running. This includes
// apps in the Disabled status, as well as the Paused status.
Stopped,
// Filter only on Paused apps.
Paused,

}

• EnableApp { installed_app_id: InstalledAppId } -> AppEnabled { app: AppInfo, errors:
Vec<(CellId, String)> }: Change the specified app from a disabled to an enabled state in the con-
ductor.

– Notes: Once an app is enabled, zome functions of all the Cells associated with the App that have a
Create or CreateIfNotExists provisioning strategy MUST immediately be callable. Previously enabled
Applications MUST also be loaded and enabled automatically on any reboot of the conductor.

– Return value: If the attempt to enable the app was successful,
AdminResponse::Error(ExternalApiWireError::ActivateApp(s)) MUST be returned, where s
is an error message to be used for troubleshooting purposes.

• DisableApp { installed_app_id: InstalledAppId } -> AppDisabled: Changes the specified app from an
enabled to a disabled state in the conductor.

– Notes: When an app is disabled, calls to zome functions of all the Cells associated with the App MUST
fail, and the app MUST not be loaded on a reboot of the conductor. Note if cells are associated with more
than one app, they MUST not be disabled unless all of the other apps using the same cells have also been
disabled.

• AttachAppInterface { port: Option<u16>, allowed_origins: AllowedOrigins, installed_app_id:
Option<InstalledAppID> } -> AppInterfaceAttached { port: u16 }: Open up a new WebSocket interface
for processing AppRequests.

– Notes: All active apps, or the app specified by installed_app_id, if active, MUST be callable via the
attached app interface. If an app is specified, all other apps MUST NOT be callable via the attached
app interface. If the allowed_origins argument is not Any, the Conductor MUST reject any connection
attempts supplying an HTTP Origin header value not in the list. Optionally a port parameter MAY be
passed to this request. If it is None, a free port SHOULD be chosen by the conductor. The response MUST
contain the port chosen by the conductor if None was passed.

– Arguments: The allowed_origins field is a value of the type:

enum AllowedOrigins {
Any,
Origins(HashSet<String>),

}

• ListAppInterfaces -> AppInterfacesListed(Vec<AppInterfaceInfo>): List all the app interfaces currently
attached with AttachAppInterface, which is a list of WebSocket ports that can process AppRequest()s.

– Return value: The app interface info is defined as:

struct AppInterfaceInfo {
port: u16,
allowed_origins: AllowedOrigins,
installed_app_id: Option<InstalledAppId>,

}

• Debugging and introspection dumps: The following functions are for dumping data about the state of the
Conductor. Implementations MAY implement these functions; there is no standard for what they return, other
than that they SHOULD be self-describing JSON blobs of useful information that can be parsed by diagnostic
tools.

– DumpState { cell_id: CellId } -> StateDumped(String): Dump the state of the cell specified by the
argument cell_id, including its chain.

83

– DumpConductorState -> ConductorStateDumped(String): Dump the configured state of the Conductor,
including the in-memory representation and the persisted state, as JSON. State to include MAY include
status of Applications and Cells, networking configuration, and app interfaces.

– DumpFullState { cell_id: CellId, dht_ops_cursor: Option<u64> } ->
FullStateDumped(FullStateDump): Dump the full state of the specified Cell, including its chain,
the list of known peers, and the contents of the DHT shard for which it has claimed authority.

∗ Notes: The full state including the DHT shard can be quite large.

∗ Arguments: The database cursor of the last-seen DHT operation row can be supplied in the dht_-
ops_cursor field to dump only unseen state. If specified, the call MUST NOT return DHT operation
data from this row and earlier.

∗ Return value: Unlike other dump functions, this one has some explicit structure defined by Rust
types, taking the form:

struct FullStateDump {
// Information from the Kitsune networking layer about the
// agent, the DHT space, and their known peers.
peer_dump: P2pAgentsDump,
// The cell's source chain.
source_chain_dump: SourceChainDump,
// The dump of the DHT shard for which the agent is responsible.
integration_dump: FullIntegrationStateDump,

}

struct P2pAgentsDump {
// Information about this agent's cell.
this_agent_info: Option<AgentInfoDump>,
// Information about this DNA itself at the level of Kitsune
// networking.
this_dna: Option<(DnaHash, KitsuneSpace)>,
// Information about this agent at the level of Kitsune
// networking.
this_agent: Option<(AgentPubKey, KitsuneAgent)>,
// Information about the agent's known peers.
peers: Vec<AgentInfoDump>,

}

// Agent info dump with the agent, space, signed timestamp, and
// expiry of last self-announced info, printed in a pretty way.
struct AgentInfoDump {

kitsune_agent: KitsuneAgent,
kitsune_space: KitsuneSpace,
dump: String,

}

struct SourceChainDump {
records: Vec<SourceChainDumpRecord>,
published_ops_count: usize,

}

struct SourceChainDumpRecord {
signature: Signature,
action_address: ActionHash,
action: Action,
entry: Option<Entry>,

}

struct FullIntegrationStateDump {

84

// Ops in validation limbo awaiting sys or app validation.
validation_limbo: Vec<DhtOp>,
// Ops waiting to be integrated.
integration_limbo: Vec<DhtOp>,
// Ops that are integrated. This includes rejected ops.
integrated: Vec<DhtOp>,
// Database row ID for the latest DhtOp that we have seen.
// Useful for subsequent calls to `FullStateDump` to return only
// what they haven't seen.
dht_ops_cursor: u64,

}

– DumpNetworkMetrics { dna_hash: Option<DnaHash> } -> NetworkMetricsDumped(String): Dump
the network metrics tracked by Kitsune.

∗ Arguments: If the dna_hash argument is supplied, the call MUST limit the metrics dumped to a
single DNA hash space.

– DumpNetworkStats -> NetworkStatsDumped(String): Dump network statistics from the back-end net-
working library. This library operates on a lower level than Kitsune and Holochain P2P, translating the P2P
messages into protocol communications in a form appropriate for the physical layer. Our implementation
currently includes a WebRTC library.

• AddAgentInfo { agent_infos: Vec<AgentInfoSigned> } -> AgentInfoAdded: Add a list of agents to this
conductor’s peer store.

– Notes: Implementations MAY implement this function. It is intended as a way of shortcutting peer
discovery and is useful for testing. It is also intended for use cases in which it is important for agent
existence to be transmitted out-of-band.

• GetAgentInfo { dna_hash: Option<DnaHash> } -> AgentInfoReturned(Vec<AgentInfoSigned>): Re-
quest information about the agents in this Conductor’s peer store; that is, the peers that this Conductor knows
about.

– Notes: Implementations MAY implement this function. It is useful for testing across networks. It is also
intended for use cases in which it is important for peer info to be transmitted out-of-band.

– Arguments: If supplied, the dna_hash argument MUST constrain the results to the peers of the specified
DNA.

• GraftRecords { cell_id: CellId, validate: bool, records: Vec<Record> } -> RecordsGrafted:
“Graft” Records onto the source chain of the specified CellId.

– Notes: Implementations MAY implement this function. This admin call is provided for the purposes of
restoring chains from backup. All records must be authored and signed by the same agent; if they are not,
the call MUST fail. Caution must be exercised to avoid creating source chain forks, which will occur if
the chains in the Conductor store and the new records supplied in this call diverge and have had their
RegisterAgentActivity operations already published.

– Arguments:
∗ If validate is true, then the records MUST be validated before insertion. If validate is false, then

records MUST be inserted as-is.
∗ Records provided are expected to form a valid chain segment (ascending sequence numbers and valid

prev_action references). If the first record contains a prev_action which matches an existing record,
then the new records MUST be “grafted” onto the existing chain at that point, and any other records
following that point which do not match the new records MUST be discarded. See the note above
about the risk of source chain forks when using this call.

∗ If the DNA whose hash is referenced in the cell_id argument is not already installed on this conductor,
the call MUST fail.

• GrantZomeCallCapability(GrantZomeCallCapabilityPayload) -> ZomeCallCapabilityGranted: Attempt
to store a capability grant on the source chain of the specified cell, so that a client may make zome calls to that
cell.

– Notes: Callers SHOULD construct a grant that uses the strongest security compatible with the use case; if
a client is able to construct and store an Ed25519 key pair and use it to sign zome call payloads, a grant

85

using CapAccess::Assigned with the client’s public key SHOULD be favored.

– Arguments: The payload is defined as:

struct GrantZomeCallCapabilityPayload {
// Cell for which to authorize the capability.
cell_id: CellId,
// Specifies the capability, consisting of zomes and functions to
// allow signing for as well as access level, secret and assignees.
cap_grant: ZomeCallCapGrant,

}

• DeleteCloneCell(DeleteCloneCellPayload) -> CloneCellDeleted: Delete a disabled cloned cell.

– Notes: The conductor MUST return an error if the specified cell cannot be disabled.

– Arguments: The payload is defined as:

struct DeleteCloneCellPayload {
app_id: InstalledAppId,
clone_cell_id: CloneCellID,

}

• GetStorageInfo -> StorageInfoReturned(StorageInfo): Request storage space consumed by the Conductor.

– Notes: Implementations MAY implement this function to allow resource consumption to be displayed. If
implemented, all runtime resources consumption MUST be reported.

– Return Value: Storage consumption info, defined as:

struct StorageInfo {
blobs: Vec<StorageBlob>,

}

enum StorageBlob {
Dna(DnaStorageInfo),

}

// All sizes are in bytes. Fields ending with `_on_disk` contain the
// actual file size, inclusive of allocated but empty space in the file.
// All other fields contain the space taken up by actual data.
struct DnaStorageInfo {

// The size of the source chain data.
authored_data_size: usize,
authored_data_size_on_disk: usize,
// The size of the DHT shard data for which all local cells are
// authorities.
dht_data_size: usize,
dht_data_size_on_disk: usize,
// The size of retrieved DHT data for which local cells are not
// authorities.
cache_data_size: usize,
cache_data_size_on_disk: usize,
// The ID of the app to which the above data applies.
used_by: Vec<InstalledAppId>,

}

• IssueAppAuthenticationToken(IssueAppAuthenticationTokenPayload) -> AppAuthenticationTokenIssued(AppAuthenticationTokenIssued):
Request an authentication token for use by a client that wishes to connect to the app WebSocket.

– Notes: Implementations MUST expect a client to supply a valid token in the initial HTTP request that
establishes the WebSocket connection, and MUST reject connection attempts that do not supply a valid
token. An invalid token is defined as either one that was never issued or one that is no longer usable. The
latter happens in four different cases:

86

∗ The token had an expiry set and the expiry timeout hsa passed,
∗ The token was single-use and has been used once,
∗ The token was revoked,
∗ The conductor has been restarted since the token was issued (implementations MAY implement this

case).

Implementations MUST bind the WebSocket connection to the app for which the token was issued, excluding
the possibility of a client accessing the functionality, status, and data of an app other than the one the token is
bound to. Implementations SHOULD NOT terminate an established WebSocket connection once the token has
expired; the expiry is to be enforced at connection establishment time.

– Arguments: The payload is defined as:

struct IssueAppAuthenticationTokenPayload {
// The app to bind the token to.
installed_app_id: InstalledAppID,
// MAY be set to a reasonable default such as 30 seconds if not
// specified; MUST NOT expire if set to 0.
expiry_seconds: u64,
// MAY default to true.
single_use: bool,

}

– Return type: The payload is defined as:

struct AppAuthenticationTokenIssued {
token: Vec<u8>,
expires_at: Option<Timestamp>,

}

The generated token MUST be unguessable; that is, it MUST be sufficiently strong to thwart brute-force
attempts and sufficiently random to thwart educated guesses.

• RevokeAppAuthenticationToken(AppAuthenticationToken) -> AppAuthenticationTokenRevoked: Revoke
a previously issued app interface authentication token.

– Notes: Implementations MUST reject all WebSocket connection attempts using this token after the call
has completed.

• GetCompatibleCells(DnaHash) -> CompatibleCellsReturned(BTreeSet<(InstalledAppId,
BTreeSet<CellId>)>): Find installed cells which use a DNA that is forward-compatible with the given DNA
hash, as defined in the contents of the lineage field in the DNA manifest.

– Notes: Implementations SHOULD search DNAs installed by all applications, as well as DNAs installed
ad-hoc via RegisterDna.

App API An App interface MUST expose the following API for all the apps to which it is bound. However, it MUST
also enforce the use of valid Origin headers and authentication tokens for each WebSocket connection establishment
attempt, and MUST bind the connection to the app for which the token was issued.

As with the Admin API, the following are expressed as variants of an AppRequest enum and a corresponding
AppResponse enum.

For error conditions, the AppResponse::Error(e) variant MUST be used, where e is a variant of the following enum:

enum ExternalApiWireError {
// Any internal error.
InternalError(String),
// The input to the API failed to deserialize.
Deserialization(String),
// The DNA path provided was invalid.
DnaReadError(String),
// There was an error in the ribosome.
RibosomeError(String),
// Error activating app.
ActivateApp(String),

87

// The zome call is unauthorized.
ZomeCallUnauthorized(String),
// A countersigning session has failed.
CountersigningSessionError(String),

}

• GetAppInfo -> AppInfoReturned(Option<AppInfo>): Get info about the app, including info about each cell
instantiated by this app. See above for the definition of AppInfo.

• CallZome(ZomeCall) -> ZomeCalled(ExternIO): Call a zome function.
– Notes: Implementations MUST enforce a valid capability for the function being called. This means that if

the function is covered by a transferrable or assigned grant, the secret MUST be provided and valid; and if
the function is covered by an assigned grant, the provenance MUST be valid. Regardless of the grant’s
access type, implementations MUST enforce that the provided signature matches the provided provenance.
Implementations also MUST prevent replay attacks by rejecting a call that supplies a nonce that has been
seen before or an expiry timestamp that has passed. Finally, the provenance (source) of the call MUST
match the signature.

– Arguments: The payload is defined as:
struct ZomeCall {

// The ID of the cell containing the zome to be called.
cell_id: CellId,
// The zome containing the function to be called.
zome_name: ZomeName,
// The name of the zome function to call.
fn_name: FunctionName,
// The serialized data to pass as an argument to the zome function
// call.
payload: ExternIO,
// The secret necessary for exercising a claim against the granted
// capability, if the capability is `CapAccess::Transferable` or
// `CapAccess::Assigned`.
cap_secret: Option<CapSecret>,
provenance: AgentPubKey,
// The signature on a serialized `ZomeCallUnsigned` struct with the same field values as this struct instance, but without the `signature` field. See below.
signature: Signature,
nonce: Nonce256Bits,
expires_at: Timestamp,

}

The payload property is a MsgPack-encoded data structure provided to the zome function. This structure
MUST be matched against the parameter defined by the zome function, and the zome function MUST
return a serialization error if it fails.

– Return Value: The payload MUST be AppResponse::ZomeCalled containing a MsgPack serialization
of the zome function’s return value if successful, or AppResponse::Error containing one of the following
errors:

∗ For unauthorized zome calls, ExternalApiWireError::ZomeCallUnauthorized(s), where s is a mes-
sage that describes why the call was unauthorized.

∗ For zome calls that attempt to initiate, process, or commit a countersigned entry,
ExternalApiWireError::CountersigningSessionError(s), where s is a message that describes the
nature of the failure.

∗ For all other errors, including errors returned by the zome function itself,
ExternalApiWireError::InternalError(s), where s describes the nature of the error.

• CreateCloneCell(CreateCloneCellPayload) -> CloneCellCreated(ClonedCell): Clone a DNA, thus cre-
ating a new Cell.

– Notes: This call specifies a DNA to clone by its role_id as specified in the app bundle manifest. The
function MUST register a new DNA with a unique ID and the specified modifiers, create a new cell from
this cloned DNA, and add the cell to the specified app. If at least one modifier is not distinct from the

88

original DNA, or the act of cloning would result in a clone with the same DNA hash as an existing cell in
the app, the call MUST fail.

– Arguments: The payload is defined as:
struct CreateCloneCellPayload {

// The DNA to clone, by role name.
role_name: RoleName,
// Modifiers to set for the new cell.
// At least one of the modifiers must be set to obtain a distinct
// hash for the clone cell's DNA.
modifiers: DnaModifiersOpt<YamlProperties>,
// Optionally set a proof of membership for the clone cell.
membrane_proof: Option<MembraneProof>,
// Optionally set a human-readable name for the DNA clone.
name: Option<String>,

}

– Return value: The payload is defined as:
struct ClonedCell {

cell_id: CellId,
// A conductor-local clone identifier.
clone_id: CloneId,
original_dna_hash: DnaHash,
// The DNA modifiers that were used to instantiate this clone cell.
dna_modifiers: DnaModifiers,
// The name the cell was instantiated with.
name: String,
// Whether or not the cell is running.
enabled: bool,

}

• DisableCloneCell(DisableCloneCellPayload) -> CloneCellDisabled: Disable a clone cell.
– Notes: When the clone cell exists, it is disabled, after which any zome calls made to the cell MUST fail

and functions scheduled by the cell MUST be unscheduled. Additionally, any API calls that return AppInfo
should show a disabled status for the given cell. If the cell doesn’t exist or is already disabled, the call
MUST be treated as a no-op. Deleting a cloned cell can only be done from the Admin API, and cells MUST
be disabled before they can be deleted.

– Arguments: The payload is defined as:
struct DisableCloneCellPayload {

clone_cell_id: CloneCellId,
}

• EnableCloneCell(EnableCloneCellPayload) -> CloneCellEnabled(ClonedCell): Enabled a clone cell that
was previously disabled or not yet enabled.

– Notes: When the clone cell exists, it MUST be enabled, after which any zome calls made to the cell MUST
be attempted. Additionally any API functions that return AppInfo should show an enabled status for the
given cell. If the cell doesn’t exist, the call MUST be treated as a no-op.

– Arguments: The payload is defined as:
struct EnableCloneCellPayload {

clone_cell_id: CloneCellId,
}

• GetNetworkInfo(NetworkInfoRequestPayload) -> NetworkInfoReturned(Vec<NetworkInfo>): Get infor-
mation about networking processes.

– Arguments: The payload is defined as:
struct NetworkInfoRequestPayload {

// Get gossip info for these DNAs.

89

// Implementations MUST restrict results to DNAs that are part of
// the app.
dnas: Vec<DnaHash>,
// Timestamp in milliseconds since which received amount of bytes
// from peers will be returned. Defaults to UNIX_EPOCH.
last_time_queried: Option<Timestamp>,

}

– Return value: The payload is defined as:
struct NetworkInfo {

fetch_pool_info: FetchPoolInfo,
current_number_of_peers: u32,
arc_size: f64,
total_network_peers: u32,
bytes_since_last_time_queried: u64,
completed_rounds_since_last_time_queried: u32,

}

struct FetchPoolInfo {
// Total number of bytes expected to be received through fetches.
op_bytes_to_fetch: usize,
// Total number of ops expected to be received through fetches.
num_ops_to_fetch: usize,

}

• ListWasmHostFunctions -> ListWasmHostFunctions(Vec<String>): List all the host functions supported by
this conductor and callable by WASM guests.

• ProvideMembraneProofs(HashMap<RoleName, MembraneProof) -> Ok: Provide the deferred membrane proofs
that the app is awaiting.

– Arguments: The input is supplied as a mapping of role names to the corresponding membrane proofs.
– Return value: Implementations MUST return AppResponse::Error with an informative message if the

application is already enabled.
• EnableApp -> Ok: Enable an app which has been awaiting, and has received, deferred membrane proofs.

– Notes: If the app is awaiting deferred membrane proofs, implementations MUST NOT allow an app to be
enabled until the membrane proofs has been provided.

– Return value: If this call is attempted on an already running app or an app that is still awaiting membrane
proofs, implementations MUST return AppResponse::Error with an informative message.

	Abstract
	Holochain Distributed Coordination by Scaled Consent, not Global Consensus
	Introduction
	Preamble – A Focus on Practice, Not Just Theory
	Axioms – Our Underlying Basis for Coordination
	Axioms for Multi-agent Coordination Through Scaled Consent
	Detailed Axioms and Architectural Consequences

	From Global Consensus to Scaled Consent
	Fault Tolerance and Reducing Uncertainty
	Increasing Gradients of Certainty
	Scaling Coherence across Consenting Agents

	Conclusion

	Holochain Design Overview: A Game Play Metaphor
	Playing Games
	System Description
	Agents
	Games
	Actions (and Entries and Records)
	The Distributed Ledger

	System Correctness: Confidence
	Fault Tolerance
	Completeness/Fit
	Multi-agent reality binding (Countersigning)
	Scaling
	Shared-state Finality

	Security
	Gating Access via Cryptographic Object Capabilities
	Validation & Warranting
	Security from Attack Categories

	Evolvability

	Holochain Formal Design Elements
	Definition of Foundational Principles
	System Architecture Overview
	Some notes on terminology

	Integrity Guarantees
	Source Chain: Formal State Model
	Countersigning

	Graph DHT: Formal State Model
	Graph Transformation

	Security & Safety
	Cryptographic Object Capabilities
	Warrants

	Cross-DNA Composability
	Holochain Implementation

	Conclusion
	Appendix A: Holochain Implementation Spec v0.3.0 Beta
	Ribosome: The Application ``Virtual Machine''
	Ribosome/Zome Interop ABI
	Handling Guest Functions
	HDI
	HDK

	State Management via Workflows
	Ontology of Workflows

	Shared Data (rrDHT)
	DHT Operations
	Changing States of DHT Content

	P2P Networking
	High-Level Networking (Holochain P2P)
	Low-Level Networking (Kitsune P2P)

	The Conductor
	Bundle Formats
	API

