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ABSTRACT : We present a scalable, agent-centric distributed computing platform. We use a
formalism to characterize distributed systems, show how it applies to some existing distributed
systems, and demonstrate the benefits of shifting from a data-centric to an agent-centric model.
We present a detailed formal specification of the Holochain system, along with an analysis of its
systemic integrity, capacity for evolution, total system computational complexity, implications for
use-cases, and current implementation status.

I. INTRODUCTION

Distributed computing platforms have achieved a new
level of viability with the advent of two foundational
cryptographic tools: secure hashing algorithms, and
public-key encryption. These have provided solutions
to key problems in distributed computing: verifiable,
tamper-proof data for sharing state across nodes in the
distributed system and confirmation of data provenance
via digital signature algorithms. The former is achieved
by hash-chains, where monotonic data-stores are ren-
dered intrinsically tamper-proof (and thus confidently
sharable across nodes) by including hashes of previous
entries in subsequent entries. The latter is achieved by
combining cryptographic encryption of hashes of data
and using the public keys themselves as the addresses
of agents, thus allowing other agents in the system to
mathematically verify the data’s source.

Though hash-chains help solve the problem of indepen-
dently acting agents reliably sharing state, we see two
very different approaches in their use which have deep
systemic consequences. These approaches are demon-
strated by two of today’s canonical distributed systems:

1. git1: In git, all nodes can update their hash-chains
as they see fit. The degree of overlapping shared
state of chain entries (known as commit objects)
across all nodes is not managed by git but rather ex-
plicitly by action of the agent making pull requests
and doing merges. We call this approach agent-
centric because of its focus on allowing nodes to
share independently evolving data realities.

2. Bitcoin2: In Bitcoin (and blockchain in general),
the “problem” is understood to be that of figuring
out how to choose one block of transactions among
the many variants being experienced by the mining
nodes (as they collect transactions from clients in
different orders), and committing that single vari-
ant to the single globally shared chain. We call this

1 https://git-scm.com/about
2 https://bitcoin.org/bitcoin.pdf

approach data-centric because of its focus on cre-
ating a single shared data reality among all nodes.

We claim that this fundamental original stance re-
sults directly in the most significant limitation of the
blockchain: scalability. This limitation is widely known
and many solutions have been offered. Holochain offers a
way forward by directly addressing the root data-centric
assumptions of the blockchain approach.

II. PRIOR WORK

This paper builds largely on recent work in crypto-
graphic distributed systems and distributed hash tables
and multi-agent systems.
Ethereum: Wood [EIP-150], DHT: [Kademlia] Benet

[IPFS]

III. DISTRIBUTED SYSTEMS

A. Formalism

We define a simple generalized model of a distributed
system Ω using hash-chains as follows:

1. Let N be the set of elements {n1, n2, . . . nn} par-
ticipating in the system. Call the elements of N
nodes or agents.

2. Let each node n consist of a set Sn with elements
{σ1, σ2, . . . }. Call the elements of Sn the state
of node n. For the purposes of this paper we as-
sume ∀σi ∈ Sn : σi = {Xi, Di} with Xi being a
hash-chain and D a set of non-hash chain data
elements.

3. Let H be a cryptographically secure hash function.

4. Let there be a state transition function :

τ(σi, t) = (τX (Xi, t), τD(Di, t)) (3.1)

where:
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(a) τX (Xi, t) = Xi+1 where

Xi+1 = Xi ∪ {xi+1}
= {x1, . . . , xi, xi+1}

(3.2)

with

xi+1 = {h, t}
h = {H(t), y}
y = {H(xj)|j < i}

(3.3)

Call h a header and note how the sequence
of headers creates a chain (tree, in the general
case) by linking each header to the previous
header(s) and the transaction.

(b) Di+1 = τD(σi, t)

5. Let V (t, v) be a function that takes t, along with
extra validation data v, verifies the validity of t and
only if valid calls a transition function for t. Call
V a validation function.

6. Let I(t) be a function that takes a transaction t,
evaluates it using a function V , and if valid, uses
τ to transform S. Call I the input or stimulus
function.

7. Let P (x) be a function that can create transactions
t and trigger functions V and τ , and P itself is
triggered by state changes or the passage of time.
Call P the processing function.

8. Let C be a channel that allows all nodes in N
to communicate and over which each node has a
unique address An. Call C and the nodes that com-
municate on it the network .

9. Let E(i) be a function that changes functions
V, I, P . Call E the evolution function.

Explanation: this formalism allows us to model sepa-
rately key aspects of agents.

First we separate the agent’s state into a cryptograph-
ically secured hash-chain part X and another part that
holds arbitrary data D. Then we split the process of up-
dating the state into two steps: 1) the validation of new
transactions t through the validation function V (t, v),
and 2) the actual change of internal state S (as either X
or D) through the state transition functions τX and τD.
Finally, we distinguish between 1) state transitions trig-
gered by external events, stimuli, received through I(t),
and 2) a node’s internal processing P (x) that also results
in calling V and τ with an internally created transaction.
We define some key properties of distributed systems:

1. Call a set of nodes in N for which any of the func-
tions T, V, P and E have the properties of being
both reliably known and also known to be identical
for that set of nodes: trusted nodes with respect
to the functions so known.

2. Call a channel C with the property that messages
in transit can be trusted to arrive exactly as sent:
secure .

3. Call a channel C on which the address An of a node
n is An = H(pkn), where pkn is the public key of
the node n, and on which all messages include a
digital signature of the message signed by sender:
authenticated .

4. Call a data element that is accessible by its hash
content addressable .

For the purposes of this paper we assume untrusted
nodes, i.e., independently acting agents solely under their
own control, and an insecure channel. We do this be-
cause the very raison d’être of the cryptographic tools
mentioned above is to allow individual nodes to trust the
whole system under this assumption. The cryptography
immediately makes visible in the state data when any
other node in the system uses a version of the functions
different from itself. This property is often referred to as
a trustless system. However, because it simply means
that the locus of trust has been shifted to the state data,
rather than other nodes, we refer to it as systemic reliance
on intrinsic data integrity . See IVC for a detailed
discussion on trust in distributed systems.

B. Data-Centric and Agent-Centric Systems

Using this definition, Bitcoin can be understood as that
system Ωbitcoinwhere:

1. ∀n,m ∈ N : Xn
!
= Xm where

!
= means is enforced.

2. V (e, v) e is a block and v is the output from the
“proof-of-work” hash-crack algorithm, and V con-
firms the validity of v, the structure and validity of
e according to the double-spend rules.

3. I(t, n) accepts transactions from clients and adds
them to D (the mempool) to build a block for later
use in triggering V ().

4. P (i) is the mining process including the “proof-of-
work” algorithm and composes with V () and τX
when the hash is cracked.

5. E(i) is not formally defined but can be mapped
informally to a decision by humans operating the
nodes to install new versions of the Bitcoin soft-
ware.

The first point establishes the central aspect of Bit-
coin’s (and Blockchain applications’ in general) strategy
for solving or avoiding problems otherwise encountered
in decentralized systems, and that is by trying to main-
tain a network state in which all nodes should have the
same (local) chain.
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By contrast, for Ωgitthere is no such constraint on any
Xn, Xm in nodes n and m matching, as git’s core intent
is to allow different agents act autonomously and diver-
gently on a shared code-base, which would be impossible
if the states always had to match.

Through the lens of the formalism some other aspects
of Ωgitcan be understood as follows:

1. the validation function V (e, v) by default only
checks the structural validity of e as a commit ob-
ject not it’s content (though note that git does also
support signing of commits which is also part of the
validation)

2. the stimulus function I(t) for Ωgit consists of the
set of git commands available to the user

3. the state transition function τX is the internal git
function that adds a commit object and τD is the
git function that adds code to the index triggered
by add

4. E is, similarly to Ωbitcoin, not formally defined for
Ωgit.

We leave a more in depth application of the formalism
to Ωgit as an exercise for the reader, however we under-
score that the core difference between Ωbitcoin and Ωgit

lies in the former’s constraint of ∀n,m ∈ N : Xn
!
= Xm.

One direct consequence of this for Ωbitcoin is that as the
size of Xn grows, necessarily all nodes of Ωbitcoin must
grow in size, whereas this is not necessarily the case for
Ωgit and in it lies the core of Bitcoin’s scalability issues.

It’s not surprising that a data-centric approach was
used for Bitcoin. This comes from the fact that its stated
intent was to create digitally transferable “coins,” i.e.,
to model in a distributed digital system that property
of matter known as location. On centralized computer
systems this doesn’t even appear as a problem because
centralized systems have been designed to allow us to
think from a data-centric perspective. They allow us
to believe in a kind of data objectivity, as if data exists,
like a physical object sitting someplace having a location.
They allow us to think in terms of an absolute frame - as if
there is a correct truth about data and/or time sequence,
and suggests that “consensus” should converge on this
truth. In fact, this is not a property of information. Data
exists always from the vantage point of an observer. It is
this fact that makes digitally transferable “coins” a hard
problem in distributed systems which consist entirely of
multiple vantage points by definition.

In the distributed world, events don’t happen in the
same sequence for all observers. For Blockchain specif-
ically, this is the heart of the matter: choosing which
block, from all the nodes receiving transactions in differ-
ent orders, to use for the “consensus,” i.e., what single
vantage point to enforce on all nodes. Blockchains don’t
record a universal ordering of events – they manufacture
a single authoritative ordering of events – by stringing

together a tiny fragment of local vantage points into one
global record that has passed validation rules.
The use of the word consensus seems at best dubious

as a description of a systemic requirement that all nodes
carry identical values of Xn. Especially when the algo-
rithm for ensuring that sameness is essentially a digital
lottery powered by expensive computation of which the
primary design feature is to randomize which node gets
to run Vn such that no node has preference to which e
gets added to Xn.
The term consensus, as normally used, implies delib-

eration with regard to differences and work on crafting
a perspective that holds for all parties, rather than sim-
ply selecting one party’s dataset at random. In contrast,
as a more agent-centric distributed system, git’s merge
command provides for a processes more recognizable as
consensus, however it’s not automated.
Perhaps a more accurate term for the hash-crack al-

gorithm applied in Ωbitcoin would be “proof-of-luck” and
for the process itself simply sameness, not consensus. If
you start from a data-centric viewpoint, which naturally
throws out the “experience” of all agents in favor of just
one, it’s much harder to design them to engage in pro-
cesses that actually have the real-world properties of con-
sensus. If the constraint of keeping all nodes’ states the
same were adopted consciously as a fit for a specific pur-
pose, this would not be particularly problematic. Un-
fortunately the legacy of this data-centric viewpoint has
been held mostly unconsciously and is adopted by more
generalized distributed computing systems, for which the
intent doesn’t specifically include the need to model “dig-
ital matter” with universally absolute location. While
having the advantages of conceptual simplicity, it also im-
mediately creates scalability issues, but worse, it makes
it hard to take advantages inherent in the agent-centric
approach.

IV. GENERALIZED DISTRIBUTED
COMPUTATION

The previous section described a general formalism for
distributed systems and compared git to Bitcoin as an ex-
ample of an agent-centric vs. a data-centric distributed
system. Neither of these systems, however, provides gen-
eralized computation in the sense of being a framework
for writing computer programs or creating applications.
So, lets add the following constraints to formalism IIIA
as follows:

1. With respect to a machine M , some values of Sn

can be interpreted as: executable code and the re-
sults of code execution, and they may be accessible
to M and the code. Call such values the machine
state .

2. ∃t and nodes n such that In(t) will trigger execution
of that code. Call such transaction values calls.
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A. Ethereum

Ethereum3 provides the current premier example of
generalized distributed computing using the Blockchain
model. The Ethereum approach comes from an ontology
of replicating the data certainty of single physical com-
puter, on top of the stratum of a bunch of distributed
nodes using the blockchain strategy of creating a single
data reality in a cryptographic chain, but committing
computations, instead of just monetary transactions as
in bitcoin, into the blocks.

This approach does live up to the constraints listed
above as described by Wood [EIP-150] where the bulk
of that paper can be understood as a specification of a
validation function Vn() and the described state transi-
tion function σt+1 ≡ Υ(σ, T ) as a specification of how
constraints above are met.

Unfortunately the data-centric legacy inherited by
Ethereum from the blockchain model, is immediately ob-
servable in its high compute cost and difficulty in scaling.

B. Holochain

We now proceed to describe an agent-centric dis-
tributed generalized computing system, where nodes can
still confidently participate in the system as whole even
though they are not constrained to maintaining the same
chain state as all other nodes.

In broad strokes: a Holochain application consists of
a network of agents maintaining a unique source chain
of their transactions, paired with a shared space imple-
mented as a validating, monotonic, sharded, distributed
hash table (DHT) where every node enforces validation
rules on that data in the DHT as well as providing prove-
nance of data from the source chains where it originated.

Using our formalism, a Holochain based application
Ωhcis defined as:

1. Call Xn the source chain of n.

2. Let M be a virtual machine used to execute code.

3. Let the initial entry of all Xn in N
be identical and consist in the set
DNA{e1, e2, . . . , f1, f2, . . . , p1, p2, . . . } where
ex are definitions of entry types that can be
added to the chain, fx are functions defined as
executable on M (which we also refer to as the
set Fapp = {app1, app2, . . . }), and px are system
properties which among other things declare the
expected operating parameters of the application
being specificed. For example the resilience factor
as defined below is set as one such property.

3 https://github.com/ethereum/wiki/wiki/White-Paper

4. Let ιn be the second entry of all Xn and be a set
of the form {p, i} where p is the public key and i
is identifying information appropriate to the use of
this particular Ωhc. Note that though this entry is
of the same format for all Xn it’s content is not the
same. Call this entry the agent identity entry.

5. ∀ex ∈ DNA let there be an appx ∈ Fapp which can
be used to validate transactions that involve entries
of type ex. Call this set Fv or the application
validation functions.

6. Let there be a function Vsys(ex, e, v) which checks
that e is of the form specified by the entry definition
for ex ∈DNA. Call this function the system entry
validation function .

7. Let the overall validation function V (e, v) ≡∨
x Fv(ex)(v) ∧ Vsys(ex, e, v).

8. Let FI be a subset of Fapp distinct from Fv such
that ∀fx(t) ∈ FI there exists a t to I(t) that will
trigger fx(t). Call the functions in FI the exposed
functions.

9. Call any functions in Fapp not in Fv or FI internal
functions and allow them to be called by other
functions.

10. Let the channel C be authenticated .

11. Let DHT define a distributed hash table on an au-
thenticated channel as follows:

(a) Let ∆ be a set {δ1, δ2, . . . } where δx is a
set {key, value} where key is always the hash
H(value) of value. Call ∆ the DHT state .

(b) Let FDHT be the set of functions
{dhtput, dhtget} where:

i. dhtput(δkey,value) adds δkey,value to ∆

ii. dhtget(key) = value of δkey,value in ∆

(c) Assume x, y ∈ N and δi ∈ ∆x but δi /∈ ∆y.
Allow that when y calls dhtget(key), δi will be
retrieved from x over channel X and added to
∆y.

DHT are sufficiently mature that there are a num-
ber of ways to ensure property 11c. For our cur-
rent alpha version we use a modified version of
[Kademlia] as implemented in [LibP2P].

12. Let DHThc augment DHT as follows:

(a) ∀δkey,value ∈ ∆ constrain value to be of
an entry type as defined in DNA. Furth-
more, enforce that any function call dhtx(y)
which modifies ∆ also uses Fv(y) to validate
y and records whether it is valid. Note that
this validation phase may include contacting
the source nodes involved in generating y to
gather more information about the context of
the transaction, see IVC2.
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(b) Enforce that all elements of ∆ only be changed
monotonically, that is, elements δ can only be
added to ∆ not removed.

(c) Include in FDHT functions to add and retreive
meta-data to elements that point to other el-
ements with tags, thus creating a graph rela-
tions between the elments.

(d) Let d(x, y) be a symmetric and unidirectional
distance metric within the hash space defined
by H, as for example the XOR metric defined
in [Kademlia]. Note that this metric can be
applied between entries and nodes alike since
the addresses of both are values of the same
hash function H (i.e. δkey = H(δvalue) and
An = H(pkn)).

(e) Let r be a parameter of DHThc to be set de-
pendent on the characteristics deemed benefi-
cial for maintaining multiple copies of entries
in the DHT for the given application. Call r
the resilience factor .

(f) Allow that each node can maintain a set M =
{mn, . . . } of metrics mn about other nodes,
where each mn contains both a node’s direct
experience of n with respect to that metric,
as well as the experience of other nodes of n.
Enforce that one such metric kept is •uptime
which keeps track of the percentage of time a
node is experienced to be available. Call the
process of nodes sharing these metrics gossip
and refer to IVC3 for details.

(g) Enforce that ∀δ ∈ ∆n each node n maintains
a set Vδ = {n1, . . . , nq} of q closest nodes to δ
as seen from n, which are expected by n to also
hold δ. Resiliency is maintained by taking into
account node uptimes and choosing the value
of q so that:

q∑
i=0

uptime(ni) ≥ r (4.1)

whith uptime(n) ∈ [0, 1].

Call the union of such sets Vδ, from a given
node’s perspective, the overlap list and also
note that q ≥ r.

(h) Allow every node n to discard every δx ∈ ∆n if
the number of closer (with regards to d(x, y))
nodes is greater than q (i.e. if other nodes are
able to construct their Vδ sets without includ-
ing n, which in turn means there are enough
other nodes responsible for holding δ in their
∆m to have the system meet the resilience set
by r even without n participating in storing δ).
Note that this results in the network adapt-
ing to changes in topology and DHT state mi-
grations by regulating the number of network-
wide redundant copies of all δi ∈ ∆ to match
r according to node uptime.

Call DHThc a validating , monotonic, sharded
DHT.

13. ∀n ∈ N assume n implements DHThc, that is: ∆ is
a subset of D (the non hash-chain state data), and
FDHT are available to n, though note that these
functions are NOT directly available to the func-
tions Fapp defined in DNA.

14. Let Fsys be the set of functions
{syscommit, sysget, . . . } where:

(a) syscommit(e) uses the system validation func-
tion V (e, v) to add e to X , and if successful
calls dhtput(H(e), e).

(b) sysget(k) = dhtget(k).

(c) Note: there may be additional system func-
tions for a number of other purpose, such as
content encryption, decryption, signature val-
idation, etc that Fapp may pragmatically want
to rely on.

15. Allow the functions in Fapp defined in the DNA to
call the functions in Fsys.

16. Let m be an arbitrary message. Include in Fsys

the function syssend(Ato,m) which when called on
nfrom will trigger the function appreceive(Afrom,m)
in the DNA on the node nto. Call this mechanism
node-to-node messaging .

17. Allow that the definition of entries in DNA can
mark entry types as private . Enforce that if an
entry σx is of such a type then σx /∈ ∆. Note
however that entries of such type can be sent as
node-to-node messages.

18. Let the system processing function P (i) be a set of
functions in Fapp to be registered in the system as
callbacks based on various criteria, e.g. notification
of rejected puts to the DHT, passage of time, etc.

C. Systemic Integrity Through Validation

The appeal of the data-centric approach to distributed
computing comes from the fact that if you can prove that
all nodes reliably have the same data then that provides
strong general basis from which to prove the integrity
of the system as a whole. In the case of Bitcoin, the
X holds the transactions and the unspent transaction
outputs, which allows nodes to verify future transactions
against double-spend. In the case of Ethereum, X holds
what ammounts to pointers to machine state. Proving
the consistency across all nodes of those data sets is fun-
damental to the integrity of those systems.

However, because we have started with the assump-
tion (see IIIA) of distributed systems of independently

acting agents, any proof of ∀n,m ∈ N : Xn
!
= Xm in a
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blockchain based system is better understood as a choice

(hence our use of the
!
=), in that nodes use their agency

to decide when to stop interacting with other nodes based
on detecting that the X state no longer matches. This
might also be called “proof by enforcement,” and is also
appropriately known as a fork because essentially it re-
sults in partitioning of the network.

The heart of the matter has to do with the trust any
single agent has is in the system. In [EIP-150] Section
1.1 (Driving Factors) we read:

Overall, I wish to provide a system such that
users can be guaranteed that no matter with
which other individuals, systems or organizations
they interact, they can do so with absolute con-
fidence in the possible outcomes and how those
outcomes might come about.

The idea of “absolute confidence” here seems impor-
tant, and we attempt to understand it more formally and
generally for distributed systems.

1. Let Ψα be a measure of the confidence an agent has
in various aspects of the system it participates in,
where 0 ≤ Ψ ≤ 1, 0 represents no confidence, and
1 represents absolute confidence.

2. Let Rn = {α1, α2, ... . . . } define a set of aspects
about the system with which an agent n ∈ N mea-
sures confidence. Call Rn the requirements of n
with respect to Ω.

3. Let εn(α) be a thresholding function for node n ∈
N with respect to α such that when Ψα < ε(α)
then n will either stop participating in the system,
or reject the participation of others (resulting in a
fork).

4. Let RA and Let RC be partitions of R where

∀α ∈ RA : ε(α) = 1

∀α ∈ RC : ε(α) < 1
(4.2)

so any value of Ψ ̸= 1 is rejected in RA and any
value Ψ < ε(α) is rejected in RC. Call RA the
absolute requirements and RC the considered
requirements.

So we have formally separated system characteristics
that we have absolute confidence in (RA) from those we
only have considered confidence in (RC). Still unclear is
how to measure a concrete confidence level Ψα. In real-
world contexts and for real-world decisions, confidence is
mainly dependent on an (human) agent’s vantage point,
set of data at hand, and maybe even intuition. Thus
we find it more adequate to call it a soft criteria. In
order to comprehend this concept objectively and relate
it to the notion conveyed by Woods in the quote above,
we proceed by defining the measure of confidence of an
aspect α as the conditional probability of it being the
case in a given context:

Ψα ≡ P(α|C) (4.3)

where the context C models all other information avail-
able to the agent, including basic and intuitive assump-
tions.
Consider the fundamental example of cryptographi-

cally signed messages with asymetric keys as applied
throughout the field of cryptographic systems (basically
what coins the term crypto-currency). The central aspect
in this context we call αsignature which provides us with
the ability to know with certainty that a given message’s
real author Authorreal is the same agent indicated solely
via locally available data in the message’s meta infor-
mation through the cryptographic signature Authorlocal.
We gain this confidence because we deem it very hard for
any agent not in possession of the private key to create
a valid signature for a given message.

αsignature ≡ Authorreal = Authorlocal (4.4)

The appeal of this aspect is that we can check author-
ship locally, i.e., without the need of a 3rd party or direct
trusted communication channel to the real author. But,
the confidence in this aspect of a certain cryptographic
system depends on the context C:

Ψsignature = P(Authorreal = Authorlocal|C) (4.5)

If we constrain the context to remove the possibility of
an adversary gaining access to an agent’s private key and
also exclude the possible (future) existence of computing
devices or algorithms that could easily calculate or brute
force the key, we might then assign a (constructed) confi-
dence level of 1, i.e., “absolute confidence”. Without such
constraints on C, we must admit that Ψsignature < 1,
which real world events, for instance the Mt.Gox hack
from 20144, make clear.
We aim to describe these relationships in such detail

in order to point out that any set RA of absolute
requirements can’t reach beyond trivial statements -
statements about the content and integrity of the local
state of the agent itself. Following Descarte’s way of
questioning the confidence in every thought, we project
his famous statement cogito ergo sum into the reference
frame of multi-agent systems by stating: Agents can
only have honest confidence in the fact that they
perceive a certain stimulus to be present and
whether any particular abstract a priori model
matches that stimulus without contradiction, i.e.,
that an agent sees a certain piece of data and that it is
possible to interpret it in a certain way. Every conclusion
being drawn a posteriori through the application of
sophisticated models of the context is dependent on
assumptions about the context that are inherent to the
model. This is the heart of the agent-centric outlook,
and what we claim must always be taken into account

4 ”Most or all of the missing bitcoins were stolen straight out of the
Mt. Gox hot wallet over time, beginning in late 2011” [Nilsson15]
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in the design of decentralized multi-agent systems, as
it shows that any aspect of the system as a whole that
includes assumptions about other agents and non-local
events must be in RC , i.e., have an a priori confidence
of Ψ < 1. Facing this truth about multi-agent systems,
we find little value in trying to force an absolute truth

∀n,m ∈ N : Xn
!
= Xm and we instead frame the problem

as:

We wish to provide generalized means by which
decentralized multi-agent systems can be built so
that:

1. fit-for-purpose solutions can be applied in order
to optimize for application contextualized confi-
dences Ψα,

2. violation of any threshold ε(α) through the ac-
tions of other agents can be detected and managed
by any agent, such that

3. the system integrity is maintained at any point in
time or, when not, there is a path to regain it.

We perceive the agent-centric solution to these re-
quirements to be the holographic management of system-
integrity within every agent/node of the system through
application specific validation routines. These sets of val-
idation rules lie at the heart of every decentralized ap-
plication, and they vary across applications according to
context. Every agent carefully keeps track of their repre-
sentation of that portion of reality that is of importance
to them - within the context of a given application that
has to manage the trade-off between having high confi-
dence thresholds ε(α) and a low need for resources and
complexity.

For example, consider two different use cases of trans-
actions:

1. receipt of an email message where we are trying to
validate it as spam or not and

2. commit of monetary transaction where we are try-
ing to validate it against double-spend.

These contexts have different consequences that an agent
may wish to evaluate differently and may be willing to
expend differing levels of resources to validate. We de-
signed Holochain to allow such validation functions to be
set contextually per application and expose these con-
texts explicitly. Thus, one could conceivably build a
Holochain application that deliberately makes choices in
its validation functions to implement either all or par-
tial characteristics of Blockchains. Holochain, therefore,
can be understood as a framework that opens up a spec-
trum of decentralized application architectures in which
Blockchain happens to be one specific instance at one end
of this spectrum.

In the following sections we will show what categories
of validation algorithms exist and how these can be
stacked on top of each other in order to build decen-
tralized systems that are able to maintain integrity with-
out introducing an absolute truth every agent would be
forced to accept or consider.

1. Intrinsic Data Integrity

Every application but the most low-level routines uti-
lize non-trivial, structured data types. Structured im-
plies the existence of a model describing how to interpret
raw bits as an instance of a type and how pieces of the
structure relate to each other. Often, this includes cer-
tain assumptions about the set of possible values. Cer-
tain value combinations might not be meaningful or vio-
late the intrinsic integrity of this data type.
Consider the example of a cryptographically signed

message m = {body, signature, author}, where author
is given in the form of their public key. This data type
conveys the assumption that the three elements body,
signature and author correspond to each other as con-
strained by the cryptographic algorithm that is assumed
to be determined through the definition of this type. The
intrinsic data integrity of a given instance can be val-
idated just by looking at the data itself and checking
the signature by applying the cryptographic algorithm
that constitutes the central part of the type’s a priori
model. The validation yields a result ∈ {true, false}
which means that the confidence in the intrinsic data in-
tegrity is absolute, i.e. Ψintrinsic = 1.
Generally, we define the intrinsic data integrity

of a transaction type ϕ as an aspect αϕ,intrinsic ∈ RA,
expressed through the existence of a deterministic and
local validation function Vα(t) for transactions t ∈ ϕ that
does not depend on any other inputs but t itself.
Note how the intrinsic data integrity of the message ex-

ample above does not make any assumptions about any
message’s real author, as the aspect αsignature from the
previous section does. With this definition, we focus on
aspects that don’t make any claims about system prop-
erties non-local to the agent under consideration, which
roots the sequence of inferences that constitutes the va-
lidity and therefore confidence of a system’s high-level
aspects and integrity in consistent environmental inputs.

2. Membranes & Provenance

Distributed systems must rely on mechanisms to
restrict participation by nodes in processes that without
such restriction would compromise systemic integrity.
Systems where the restrictions are based on the nodes’
identity, whether that be as declared by type or author-
ity, or collected from the history of the nodes’ behaviors,
are know as permissioned [Swanson15]. Systems
where these restrictions are not based on properties of
the nodes themselves are known as permissionless.
In permissionless multi-agent systems, a principle
threat to systemic integrity comes from Sybil-Attacks
[Douceur02], where an adversary tries to overcome the
system’s validation rules by spawning a large number of
compromised nodes.

However, for both permissioned and permissionless
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systems, mechanisms exists to gate participation. For-
mally:

Let M(n, ϕ, z) be a binary function that evaluates
whether transactions of type ϕ submitted by n ∈ N
are to be accepted, and where z is any arbitrary extra
information needed to make that evaluation. Call M
the membrane function, and note that it will be a
component of the validation function V (t, v) from the
initial formalism5.

In the case of Ωbitcoin and Ωethereum, M ignores the
value of n and makes its determination solely on whether
z demonstrates the “proof” in proof-of-X be it work or
stake which is a sufficient gating to protect against Sybil-
Attacks.

Giving up the data-centric fallacy of forcing one ab-

solute truth ∀n,m ∈ N : Xn
!
= Xm reveals that we

can’t discard transaction provenance. Agent-centric dis-
tributed systems instead must rely on two central facts
about data:

1. it originates from a source and

2. its historical sequence is local to that source.

For this reason, Ωhc splits the system state data into two
parts:

1. each node is responsible to maintain its own entire
Xn or source chain and be ready to confirm that
state to other nodes when asked and

2. all nodes are responsible to share portions of other
nodes’ transactions and those transactions’ meta
data in their DHT shard - meta data includes
validity status, source, and optionally the source’s
chain headers which provide historical sequence.

Thus, the DHT provides distributed access to others’
transactions and their evaluations of the validity of those
transactions. This resembles how knowledge gets con-
structed within social fields and through interaction with
others, as described by the sociological theory of social
constructivism.
The properties of the DHT in conjunction with the

hash function provide us with a deterministically defined
set of nodes, i.e., a neighborhood for every transaction.
One cannot easily construct a transaction such that it
lands in a given neighborhood. Formally:

∀t ∈ ∆ : ∃η : H → Nr

η(H(t)) = (n1, n2, . . . , nr)
(4.6)

where the function η maps from the range H of the hash
function H to the r nodes that keep the r redundant
shards of the given transaction t (see 12h).

Having the list of nodes η(H(t)) allows an agent to
compare third-party viewpoints regarding t, with its own

and that of the transaction’s source(s). The random-
ization of the hash function H ensures that those view-
points represent an unbiased sample. r can be adjusted
depending on the application’s constraints and the cho-
sen trade-off between costs and system integrity. These
properties provide sufficient infrastructure to create sys-
tem integrity by detecting nodes that don’t play by the
rules - like changing the history or content of their source
chain. Additionally tooling appropriate for different con-
texts, including ones where detailed analysis of source
chain history may be required, including:

1. Countersigning

2. Notaries (random agents on the network can be se-
lected as such)

3. Published header examination

4. Source-chain examination.

5. Blocked-lists

6. etc..

Depending on the application’s domain, neighbor-
hoods could become vulnerable to Sybil-Attacks because
a sufficiently large percentage of compromised nodes
could introduce bias into the sample used by an agent
to evaluate a given transaction. Holochain allows ap-
plications to handle Sybil-Attacks through domain spe-
cific membrane functions. Because we chose to inher-
ently model agency within the system, permission can
be granted or declined in a programmatic and decentral-
ized manner thus allowing applications to appropriately
land on the spectrum between permissioned and permis-
sionless.
In appendix A, we provide some membrane schemes

that can be chosen either for the outer membrane of that
application that nodes have to cross in order to talk to
any other node within the application or for any sec-
ondary membrane inside the application. That latter
means that nodes could join permissionless and partic-
ipate in aspects of the application that are not integrity
critical without further condition but need to provide cer-
tain criteria in order to pass the membrane into applica-
tion crucial validation.
Thus, Holochain applications maintain systemic in-

tegrity without introducing consensus and therefore
(computationally expensive) absolute truth because 1)
any single node uses provenance to independently verify
any single transaction with the sources involved in that
transaction and 2) because each Holochain application
runs independently of all others, they are inherently per-
missioned by application specific rules for joining and
continuing participation in that application’s network.
These both provide the benefit that any given Holochain
application can tune the expense of that validation to a
contextually appropriate level.
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3. Gossip & World Model

So far, we have focused on those parts of the valida-
tion function V used to verify elements of X . However,
maintaining system integrity in distributed systems also
requires that nodes have mechanisms sharing informa-
tion about nodes that have broken the validation rules
so that they can be excluded from participation. There
exist, additionally, forms of bad-acting that do not live in
the content of a transaction but in the patterns of trans-
acting that are detrimental to the system, for example,
denial of service attacks.

Holochain uses gossip for nodes to share information
about their own experience of the behavior of other
nodes. Informally we call this information the node’s
world model . In this section we describe the nature
of Holochain’s gossip protocols and how they build and
maintain a node’s world model.

In 12e we described one such part of the world model,
the uptime metric and how it is used for maintaining
redundant copies of entries. In IVC2 we defined a mem-
brane function that determines if a node shall accept a
transaction and allowed that function to take arbitrary
data z. The main source of that data comes from this
world model.

More formally:

1. Recall that each node maintains a set M of metrics
m about other nodes it knows about. Note that in
terms of our formalism, this world model is part of
each node’s non-chain state data D.

2. Let m be a tuple of tuples: ((µ, c)self, (µ, c)others)
which record an experience µ of a node with respect
to a given metric and a confidence c of that experi-
ence, both as directly experienced or as ”hearsay”
received from other nodes.

3. Allow a class of entries stored in Xn be used also
as a metric mw which act as a signed declaration
of the experience of n regarding some other node.
Call such entries warrants. These warrants al-
low us to use the standard tooling of Holochain
to make provenance based, verifiable claims about
other nodes in the network, which propagate or-
thogonally from the usual DHT methods, via gossip
to nodes that need to ”hear” about these claims so
as to make decisions about interacting with nodes.

4. ∀m ∈ M let the function Gwith(m) return a set
of nodes important for a node to gossip with de-
fined by a probabilistic weighting that information
received from those nodes will result in changing
mother.

5. ∀m ∈ M let the function Gabout(m) return a set of
nodes important for a node to gossip about defined
by the properties of m.

6. Define subsets of Gwith(m) according to a corre-
lation with what it means to have low vs. high
confidence value c:

(a) Pull: consisting of nodes about which a low
confidence means a need for more frequent
gossip to raise a node’s confidence. Such nodes
would include those for which, with respect
to the given node, hold its published entries,
hold entries it is also responsible for holding,
are close the then node (i.e. in its lowest k-
bucket), and which it relies on for routing (i.e.
a subset of each k-bucket)

(b) Push: consisting of nodes about which a high
confidence implies a need for more frequent
gossip to spread the information about that
node. Such nodes would include ones for
which a given node has high confidence is a
bad actor, i.e. it has directly experienced bad
acting, or has received bad actor gossip from
nodes that it has high confidence in being able
to make that bad actor evaluation.

The computational costs of gossip depend on the set
of metrics that a particular application needs to keep
track of to maintain system integrity. For an application
with a very strong membership membrane perhaps only
uptime metrics are necessary to gossip about to balance
resilience. But this too may depend on a priori knowl-
edge of the nodes involved in the application. Applica-
tions with very loose membership membranes may have
a substantial number of metrics and complex membrane
functions using those metrics which may require substan-
tial compute effort. The Holochain design intentionally
leaves these parameters only loosely specified so that ap-
plications can be built fit for purpose.

V. COMPLEXITY IN DISTRIBUTED SYSTEMS

In this section we discuss the complexity of our pro-
posed architecture for decentralized systems and compare
it to the increasingly adopted Blockchain pattern.
Formally describing the complexity of decentralized

multi-agent systems is a non-trivial task for which more
complex approaches have been suggested ([Marir2014]).
This might be the reason why there happens to be
unclarity and misunderstandings within communities dis-
cussing complexity and scalability of Bitcoin for example
[Bitcoin Reddit].
In order to be able to have a ball-park comparison be-

tween our approach and the current status quo in decen-
tralized application architecture, we proceed by model-
ing the worst-case time complexity both for a single node
ΩSystemNode as well as for the whole system ΩSystem and
both as functions of the number of state transitions (i.e.,
transactions) n and the number of nodes in the system
m.
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A. Bitcoin

Let ΩBitcoin be the Bitcoin network, n be the number
of transactions andm be the number full validating nodes
(i.e., miners5) within ΩBitcoin.
For every new transaction being issued, any given node

will have to check the transaction’s signature (among
other checks, see. [BitcoinWiki]) and especially check if
this transaction’s output is not used in any other transac-
tion to reject double-spendings, resulting in a time com-
plexity of

c+ n (5.1)

per transaction. The time complexity in big-O notation
per node as a function of the number of transactions is
therefore:

ΩBitcoinNode ∈ O(n2) (5.2)

The complexity handled by one Bitcoin node does not 6

depend on m the number of total nodes of the system.
But since every node has to validate exactly the same
set of transactions, the system’s time complexity as a
function of number of transactions and number of nodes
results as

ΩBitcoin ∈ O(n2m) (5.3)

Note that this quadratic time complexity of Bitcoin’s
transaction validation process is what creates its main
bottleneck as this reduces the network’s gossip band-
width since every node has to validate every transaction
before passing it along. In order to still have an average
transaction at least flood through 90% of the network,
block size and time can’t be pushed beyond 4MB and
12s respectively, according to [Croman et al 16].

B. Ethereum

Let ΩEthereum be the Ethereum main network, n be
the number of transactions and m the number of full-
clients within in the network.

The time complexity of processing a single transaction
on a single node is a function of the code that has its
execution being triggered by the given transaction plus
a constant:

c+ ftxi
(n,m) (5.4)

5 For the sake of simplicity and focusing on a lower bound of the
system’s complexity, we are neglecting all nodes that are not
crucial for the operation of the network, such as light-clients and
clients not involved in the process of validation

6 not inherently - that is more participants will result in more
transactions but we model both values as separate parameters

Similarly to Bitcoin and as a result of the Blockchain de-
sign decision to maintain one single state (∀n,m ∈ N :

Xn
!
= Xm, “This is to be avoided at all costs as the uncer-

tainty that would ensue would likely kill all confidence in
the entire system.” [EIP-150]), every node has to process
every transaction being sent resulting in a time complex-
ity per node as

c+

n∑
i=0

ftxi
(n,m) (5.5)

that is

ΩEthereumNode ∈ O(n · favg(n,m)) (5.6)

whereas users are incentivized to hold the average com-
plexity favg(n,m) of the code being run by Ethereum
small since execution has to be payed for in gas and which
is due to restrictions such as the block gas limit. In other
words, because of the complexity

∑n
i=0 ftxi

(n,m) being
burdened upon all nodes of the system, other systemic
properties have to keep users from running complex code
on Ethereum so as to not bump into the network’s limits.
Again, since every node has to process the same set of

all transactions, the time complexity of the whole system
then is that of one node multiplied by m:

ΩEthereum ∈ O(nm · ftxi
(n,m)) (5.7)

C. Blockchain

Both examples of Blockchain systems above do need
a non-trivial computational overhead in order to work
at all: the proof-of-work, hash-crack process also called
mining. Since this overhead is not a function of either
the number of transactions nor directly of the number of
nodes, it is often omitted in complexity analysis. With
the total energy consumption of all Bitcoin miners today
being greater than the country of Iceland [Coppock17],
neglecting the complexity of Blockchain’s consensus al-
gorithm seems like a silly mistake.
Blockchains set the block time, the average time be-

tween two blocks, as a fixed parameter that the system
keeps in homeostasis by adjusting the hash-crack’s diffi-
culty according to the network’s total hash-rate. For a
given network with a given set of mining nodes and a
given total hash-rate, the complexity of the hash-crack
is constant. But as the system grows and more miners
come on-line, which increases the networks total hash-
rate, the difficulty needs to increase in order to keep the
average block time constant.
With this approach, the benefit of a higher total hash-

rate xHR is an increased difficulty of an adversary to
influence the system by creating biased blocks (which
would render this party able to do double-spend attacks).
That is why Blockchains have to subsidize mining, de-
pending on a high xHR as to make it economically im-
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possible for an attacker to overpower the trusted miners.
So, there is a direct relationship between the network’s

total trusted hash-rate and its level of security against
mining power attacks. This means that the confidence
ΨBlockchain any agent can have in the integrity of the
system is a function of the system’s hash-rate xHR, and
more precisely, the cost/work cost(xHR) needed to pro-
vide it. Looking only at a certain transaction t and given
any hacker acts economically rationally only, the confi-
dence in t being added to all Xn has an upper bound
in

ΨBlockchain(t) < min

(
1,

cost(xHR)

value(t)

)
(5.8)

In order to keep this confidence unconstrained by
the mining process and therefore the architecture of
Blockchain itself, cost(xHR) (which includes the setup
of mining hardware as well as the energy consumption)
has to grow linearly with the value exchanged within the
system.

D. Holochain

Let ΩHC be a given Holochain system, let n be the
sum of all public7 (i.e., put to the DHT) state transitions
(transactions), let all agents in ΩHC trigger in total, and
let m be the number of agents (= nodes) in the system.
Putting a new entry to the DHT involves finding a

node that is responsible for holding that specific entry,
which in our case according to [Kademlia] has a time
complexity of

c+ ⌈log(m)⌉. (5.9)

After receiving the state transition data, this node will
gossip with its q neighbors which will result in r copies
of this state transition entry being stored throughout the
system - on r different nodes. Each of these nodes has to
validate this entry which is an application specific logic
of which the complexity we shall call v(n,m).
Combined, this results in a system-wide complexity per

state transition as given with

c+ ⌈log(m)⌉︸ ︷︷ ︸
DHTlookup

+q + r · v(n,m)︸ ︷︷ ︸
validation

(5.10)

which implies the following whole system complexity in
O-notation

ΩHolochain ∈ O(n · (log(m) + v(n,m)) (5.11)

7 private (see:17) state transitions, i.e., that are confined to a lo-
cal Xn, are completely within the scope of a node’s agency and
don’t affect other parts of the system directly and can therefore
be omitted for the complexity analysis of ΩHC as a distributed
system

Now, this is the overall system complexity. In or-
der to enable comparison, we reason that in the case of
Holochain without loss of generality (i.e., dependent on
the specific Holochain application), the load of the whole
system is shared equally by all nodes. Without further
assumptions, for any given state transition, the probabil-
ity of it originating at a certain node is 1

m , so the term
for the lookup complexity needs to be divided by m to
describe the average lookup complexity per node. Other
than in Blockchain systems where every node has to see
every transaction, for the vast majority of state tran-
sitions one particular node is not involved at all. The
stochastic closeness of the node’s public key’s hash with
the entry’s hash is what triggers the node’s involvement.
We assume the hash function H to show a uniform dis-
tribution of hash values which results in the probability
of a certain node being one of the r nodes that cannot
discard this entry to be 1

m times r. The average time
complexity being handled by an average node then is

ΩHolochainNode ∈ O
( n

m
· (log(m) + v(n,m))

)
(5.12)

Note that the factor n
m represents the average number of

state transactions per node (i.e., the load per node) and
that though this is a highly application specific value, it
is an a priori expected lower bound since nodes have to
process at least the state transitions they produce them-
selves.
The only overhead that is added by the architecture

of this decentralized system is the node look-up with its
complexity of log(m).
The unknown and also application specific complex-

ity v(n,m) of the validation routines is what could drive
up the whole system’s complexity still. And indeed it
is conceivable to think of Holochain applications with a
lot of complexity within their validation routines. It is
basically possible to mimic Blockchain’s consensus vali-
dation requirement by enforcing that a validating node
communicates with all other nodes before adding an en-
try to the DHT. It could as well only be half of all nodes.
And there surely is a host of applications with only little
complexity - or specific state transitions within an appli-
cation that involve only little complexity. In a Holochain
app one can put the complexity where it is needed and
keep the rest of the system fast and scalable.

VI. IMPLEMENTATION

At the time of this writing we have a fully operational
implementation of system as described in this paper,
that includes two separate virtual machines for writing
DNA functions in JavaScript, or Lisp, along with proof-
of-concept implementations of a number of applications
including a twitter clone, a slack-like chat system, DPKI,
and a set mix-in libraries useful for building applications.

1. 30k+ lines of Go code.
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2. DHT: customized version of libp2p/IPFS’s Kadem-
lia implementation.

3. Network Transport: libp2p including end-to-end
encryption.

4. Javascript Virtual Machine: Otto
https://github.com/robertkrimen/otto.

5. Lisp Virtual Machines: Zygomys
https://github.com/glycerine/zygomys.

Additionally we have created a benchmarking suite to
examine the processing, bandwidth and storage used in
various scenarios, and compared these with Ethereum
applications in similar scenarios. These can be seen here:
https://github.com/holochain/benchmarks

We have yet to implement scalability tests for large
scale applications, but it is in our roadmap.

Appendix A: Membranes

• Invitation
One of the most natural approaches for membrane
crossing in a space in which agents provide identity
is to rely on invitation by agents that are already
in the membrane. This could be invitation:

– by anyone

– by an admin (that could either be set in the
application’s DNA or a variable shared within
the DHT - both could be mutable or constant)

– by multiple users (applying social triangula-
tion)

• Proof-of-Identity / Reputation
Given the presence of other applications/chains,
these can be used to attach the identity and its
reputation in that chain to the agent that wants
to join. Since this seems to be a crucial pillar of
the ecosystem of Holochain applications, we plan to

deliver a system-level application called DPKI (dis-
tributed public key infrastructure) that will func-
tion as the main identity and reputation platform.
A prototype of this app was already developed prior
to the writing of this paper.

• Proof-of-Presence
Use of notarized national docu-
ments/passports/identity cards within the agent
entry (second entry in X ).

• Proof-of-Service
Cryptographic proof of delivery of a service / host-
ing of an application. We intend to leverage this
technique with our distributed cloud hosting ap-
plication Holo, which we will build on top of
Holochain. See our Holo Hosting white paper for
more detail [HoloHosting].

• Proof-of-Work
If the application’s requirement is not anonymity,
other than the cryptographic hash-cracking work
applied in most of the Blockchains, this could also
be useful work that new members are asked to con-
tribute to the community or a puzzle to proof do-
main knowledge. Examples are:

– Test for knowledge about local maps to proof
citizenship

– DNA sequencing

– Protein folding

– SETI

– Publication of scientific article

• Proof-of-Stake / Payment
Deposit or payment to have agent certified.

• Immune System
Blacklisting of nodes that don’t play by the appli-
cation rules.
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